Nome Malattia
|
Amiloidosi da Gelsolina | P.24.149 |
Assonopatie sensoriali ereditarie | P.06.38 |
Atassia di Friedreich | P.07.42 |
Atassia episodica tipo II | P.07.41 |
Atassia Spinocerebellare 38 | P.10.84 |
Atassia Telangectasia | P.07.40 |
Atrofia girata della coroide e della retina | P.16.111 |
Atrofia Muscolare Spinale | P.01.11 , P.04.27 , P.04.28 , P.04.29 |
Atrofia Muscolare Spinale di tipo 1 | P.04.30 |
Atrofia Muscolare Spinale e Bulbare | P.04.25 , P.10.82 , P.10.83 |
Atrofia Ottica Dominante | P.16.109 |
Beta-talassemia | P.18.117 , P.18.118 , P.18.119 |
Cardiomiopatia Aritmogena | P.14.106 |
Ceroidolipofuscinosi neuronali | P.10.78 |
Charcot Marie Tooth di tipo 2B | P.10.63 |
Condrodisplasie | P.13.101 |
Corea di Huntington | P.10.73 , P.10.74 |
Deficit del Trasportatore della Creatina | P.11.86 |
Deficit di AGC1 | P.06.33 |
Diabete Tipo 1, Mucopolisaccaridosi Tipo 1 | P.11.94 , P.20.139 |
Difetti del ciclo dell'urea | P.11.96 |
Disabilità intellettiva | P.09.62 |
Disabilità intellettiva, disordini dello spettro autistico | P.09.56 |
Disautonomia Familiare | P.10.66 |
Discinesia parossistica kinesigenica | P.08.51 |
Disfunzione Mitocondriale | P.10.75 |
Disordine CDKL5 | P.08.45 |
Disordini dello spettro autistico | P.09.52 |
Displasia Fibrosa | P.13.103 |
Displasia gnatodiafisaria | P.13.104 |
Distrofia dei coni | P.16.110 |
Distrofia di Ullrich; Distrofia di Duchenne | P.01.12 |
Distrofia Miotonica di Steinert | P.04.23 |
Distrofia Miotonica di tipo 1 | P.01.9 , P.03.19 |
Distrofia muscolare | P.01.8 |
Distrofia Muscolare Congenita da deficit di Merosina | P.01.7 |
Distrofia Muscolare Congenita di Ullrich; Miopatia di Bethlem | P.01.13 |
Distrofia Muscolare dei cingoli di tipo 2D | P.01.6 |
Distrofia Muscolare di Duchenne | P.01.2 , P.01.3 , P.01.4 , P.01.5 , P.02.15 |
Distrofie Muscolari e Miopatie | P.01.1 |
Emicrania Emiplegica Familiare | P.06.36 |
Emicrania Emiplegica Familiare di tipo 3 | P.06.37 |
Emofilia | P.18.121 , P.18.122 |
Emofilia A | P.18.123 |
Encefalopatia epilettica infantile precoce 9 (EIEE9) | P.08.48 |
Encefalopatia famigliare con corpi di inclusione di neuroserpina | P.10.68 |
Epilessia temporale laterale autosomica dominante | P.08.44 |
Epilessia, disabilità intelletiva | P.08.47 |
Fibrosi Cistica, Malattie da accumulo lisosomiale | P.22.145 |
GLD, MLD, GM2 Gangliosidosi | P.10.69 |
Glicogenosi 1b | P.11.90 |
Glicogenosi di tipo III | P.04.21 |
Glomerulosclerosi Focale Segmentaria | P.21.143 |
Immunodeficienza combinata da difetto RAG1 | P.20.138 |
Immunodeficienza Comune Variabile | P.20.132 |
Immunodeficienze combinate e Immunodeficienza da deficit di adenosina deaminasi 2 | P.20.137 |
Insonnia Familiare Fatale | P.10.67 |
Ipercolesterolemia Familiare | P.11.88 |
Ipercolesterolemia familiare, Emoglobinopatie | P.11.89 |
Ipogonadismo ipogonadotropo | P.15.108 |
Malattia da accumulo di lipidi neutri | P.02.17 |
Malattia di Alzheimer | P.10.65 |
Malattia di Charcot Marie Tooth di tipo 2A | P.05.31 |
Malattia di Creutzfeldt-Jakob | P.10.64 |
Malattia di Fabry | P.11.87 |
Malattia di Kennedy | P.04.26 |
Malattia di Krebbe | P.10.70 |
Malattia di Pompe | P.11.95 |
Malattia di Wilson | P.11.97 , P.19.129 |
Malattia Genetiche | P.28.159 |
Malattia Granulomatosa cronica | P.20.131 |
Malattia Renale Tubulointerstiziale Autosomica Dominante | P.21.142 |
Malattie associate a mutazioni in KCNQ | P.08.50 |
Malattie da prioni genetiche | P.10.81 |
Malattie delle line cellulari immuno-ematologiche | P.18.120 |
Malattie di origine genetica | P.28.158 |
Malattie Genetiche | P.12.98 , P.20.133 , P.28.156 , P.28.157 , P.28.160 , P.28.161 , P.28.162 , P.28.163 , P.28.164 , P.28.165 , P.28.166 , P.28.167 , P.28.168 |
Malattie Genetiche in generale | P.27.155 |
Malattie Genetiche, Sindrome di Birt-Hogg-Dubè (BHD) | P.21.144 |
Malattie Mitocondriali | P.04.22 , P.11.92 |
Malattie non diagnosticate | P.26.154 |
Malattie rare | P.28.169 , P.28.170 |
Malattie retiniche ereditarie | P.16.112 |
Malformazioni Cavernose Cerebrali | P.25.152 , P.25.153 |
Miopatia congenita central core | P.02.14 |
Miopatia degli Aggregati Tubulari | P.02.18 |
Miopatie Mitocondriali | P.02.16 |
Morbo di Parkinson | P.10.79 |
Mucolipidosi di tipo 4 | P.06.39 |
Mucopolisaccaridosi di tipo I Hurler | P.11.93 |
Mucopolisaccaridosi tipo IIIA | P.10.76 , P.10.77 |
Neurodegenerazione associata a pantotenato chinasi (PKAN) e Neurodegenerazione associata alla proteina COASY (CoPAN) | P.10.80 |
Neuropatie ereditarie Charcot Marie Tooth | P.04.20 |
Osteopetrosi Autosomica Dominante di tipo 2 | P.13.99 |
Osteopetrosi Autosomica Recessiva | P.13.100 |
Osteopetrosi e Sindrome di Bartter | P.13.105 |
Paraplegia Spastica Ereditaria | P.10.71 |
Paraplegia Spastica Ereditaria (SPG7) | P.10.72 |
Patologie POLG-collegate | P.04.24 |
Polineuropatia amiloidosica familiare | P.05.32 |
Pseudo-ostruzione intestinale cronica | P.17.116 |
Retinite Pigmentosa (RP) | P.16.113 , P.16.114 |
Ritardo mentale X-linked, Macroencefalia/Autismo | P.09.57 |
Sarcoglicanopatie | P.01.10 |
Sclerosi Laterale Amiotrofica | P.28.171 |
Sindrome da cheratite, ittiosi e sordità (KID) | P.23.148 |
Sindrome da delezione 22q11.2 | P.06.35 |
Sindrome da Immunodeficienza, instabilità Centromerica, anomalie Facciali (ICF) | P.20.136 |
Sindrome da insufficienza congenita del midollo osseo | P.18.125 |
Sindrome da iper-IgM legata al cromosoma X | P.18.128 |
Sindrome della X-fragile | P.09.55 |
Sindrome di Aicardi-Goutières | P.06.34 , P.20.130 |
Sindrome di Barth | P.11.85 |
Sindrome di Beckwith-Wiedemann, Sindrome di Siver-Russell | P.15.107 |
Sindrome di Down | P.09.53 , P.09.54 |
Sindrome di Dravet | P.08.46 |
Sindrome di Ehlers-Danlos | P.13.102 |
Sindrome di Hay-Wells | P.23.146 , P.23.147 |
Sindrome di Hutchinson–Gilford | P.24.150 |
Sindrome di Iper-IgE | P.20.135 |
Sindrome di Joubert | P.07.43 |
Sindrome di Leigh, sindrome Gracile | P.11.91 |
Sindrome di Lowe | P.24.151 |
Sindrome di Omenn | P.18.126 |
Sindrome di Phelan McDermid o delezione 22q13 | P.09.58 |
Sindrome di Rett | P.09.59 |
Sindrome di Stargardt, Amaurosi congenita di Leber di tipo 10 | P.16.115 |
Sindrome di Tymothy | P.09.60 |
Sindrome di Weaver | P.09.61 |
Sindrome di Wiskott Aldrich | P.20.140 |
Sindrome HIGM | P.20.134 |
Spasmi infantili; Sindrome di West | P.08.49 |
Tecnologia di Piattaforma | P.18.127 |
Terapie genica con CSE, Trapianto di CSE | P.18.124 |
XLP-1 (Sindrome di Duncan) | P.20.141 |
Disease name
|
AEC Syndrome or Hay-Wells Syndrome | P.23.146 , P.23.147 |
AGC1 Deficiency | P.06.33 |
Agel Amyloidosis | P.24.149 |
Aicardi-Goutières Syndrome | P.06.34 , P.20.130 |
Amyotrophic Lateral Sclerosis | P.28.171 |
Arrhythmogenic Cardiomiopathy | P.14.106 |
Ataxia Telangiectasia | P.07.40 |
Autism Spectrum Disorders | P.09.52 |
Autosomal Dominant Lateral Temporal Epilepsy | P.08.44 |
Autosomal Dominant Optic Atrophy | P.16.109 |
Autosomal Dominant Osteopetrosis Type 2 | P.13.99 |
Autosomal Dominant Tubulointerstitial Kidney Disea | P.21.142 |
Autosomal Recessive Osteopetrosis | P.13.100 |
Barth Syndrome | P.11.85 |
Beckwith-Wiedemann Syndrome/Siver-Russell Syndrome | P.15.107 |
Beta-Thalassemia | P.18.117 , P.18.118 , P.18.119 |
CDKL5 Deficiency Disorder | P.08.45 |
Central Core Disease | P.02.14 |
Cerebral Cavernous Malformations | P.25.152 , P.25.153 |
Charcot Marie Tooth Disease 2A | P.05.31 |
Charcot Marie Tooth Hereditary Neuropathies | P.04.20 |
Charcot Marie Tooth Type 2B | P.10.63 |
Chondrodysplasias | P.13.101 |
Chromosome 22q11.2 Deletion Syndrome | P.06.35 |
Chronic Granulomatous Disease | P.20.131 |
Chronic Intestinal Pseudo-Obstruction | P.17.116 |
CMD, LGMD, FSHD, CM | P.01.1 |
Combined immunodeficiencies Adenosine Deaminase 2 | P.20.137 |
Cone Dystrophy | P.16.110 |
Creatine Transporter Deficiency | P.11.86 |
Creutzfeldt-Jakob Disease | P.10.64 |
CVID (Common Variable Immunodeficiency) | P.20.132 |
Cystic Fibrosis, Lysosomal Storage Disorders | P.22.145 |
Diseases of immune-hematological lineage | P.18.120 |
Down Syndrome | P.09.53 , P.09.54 |
Dravet Syndrome | P.08.46 |
Duchenne Muscular Dystrophy | P.01.2 , P.01.3 , P.01.4 , P.01.5 , P.02.15 |
Ehlers Danlos Disease | P.13.102 |
Epilepsy, Intellectual Disability | P.08.47 |
Epileptic Encephalopathy Early Infantile 9 (EIEE9) | P.08.48 |
Episodic Ataxia Type II | P.07.41 |
Fabry Disease | P.11.87 |
Familial Alzheimer's Disease | P.10.65 |
Familial Amyloidotic Polyneuropathy | P.05.32 |
Familial Dysautonomia | P.10.66 |
Familial Hemiplegic Migraine | P.06.36 |
Familial Hemiplegic Migraine 3 | P.06.37 |
Familial Hypercholesterolaemia | P.11.88 |
Familial Hypercholesterolemia, Hemoglobinopathies | P.11.89 |
Fatal Familial Insomnia | P.10.67 |
FENIB | P.10.68 |
Fibrous Dysplasia | P.13.103 |
Focal Segmental Glomerulosclerosis | P.21.143 |
Fragile-X Syndrome | P.09.55 |
Friedreich's Ataxia | P.07.42 |
Genetic Diseases | P.12.98 , P.28.156 , P.28.157 , P.28.158 , P.28.159 , P.28.160 , P.28.161 , P.28.162 , P.28.163 , P.28.164 , P.28.165 , P.28.166 , P.28.167 , P.28.168 |
Genetic Diseases in general | P.27.155 |
Genetic Diseases, Birt-Hogg-Dubé (BHD) Syndrome | P.21.144 |
Genetic Disorders | P.20.133 |
GLD, MLD, GM2 Gangliosidosis | P.10.69 |
Globoid Cell Leukodystrophy | P.10.70 |
Glycogen Storage Disease Type 1B | P.11.90 |
Glycogen Storage Disease Type III | P.04.21 |
Gnathodiaphyseal Dysplasia | P.13.104 |
Gyrate Atrophy of the Choroid and Retina | P.16.111 |
Hemophilia | P.18.121 , P.18.122 |
Hemophilia A | P.18.123 |
Hereditary Sensory Axonopathies | P.06.38 |
Hereditary Spastic Paraplegia | P.10.71 |
Hereditary Spastic Paraplegia Type 7 (SPG7) | P.10.72 |
HIGM Syndrome | P.20.134 |
HSC Gene Therapy, HSC Transplantation | P.18.124 |
Huntington's Disease | P.10.73 , P.10.74 |
Hutchinson–Gilford Progeria Syndrome | P.24.150 |
Hyper-Ige Syndrome (HIES) | P.20.135 |
Hypogonadotropic Hypogonadism | P.15.108 |
ICF Syndrome | P.20.136 |
Infantile Spasms (ISSX1); West Syndrome | P.08.49 |
Inherited Bone Marrow Failure | P.18.125 |
Inherited Retinal Disease | P.16.112 |
Intellectual Disability, Autism Spectrum Disorders | P.09.56 |
Joubert Syndrome | P.07.43 |
KCNQ-related Diseases | P.08.50 |
Keratitis-Ichthyosisdeafness (KID) Syndrome | P.23.148 |
Limb Girdle Muscular Dystrophy Type 2D (LGMD2D) | P.01.6 |
Lowe Syndrome | P.24.151 |
Mental Retardation, X-linked; Macrocephaly/Autism | P.09.57 |
Merosin Deficient Congenital Muscular Dystrophy | P.01.7 |
Mitochondria Complex III Disease | P.11.91 |
Mitochondrial Diseases | P.04.22 , P.11.92 |
Mitochondrial Disfunction | P.10.75 |
Mitochondrial Myopathies | P.02.16 |
MPSIH | P.11.93 |
Mucolipidosis Type 4 (MLIV) | P.06.39 |
Mucopolysaccharidosis I / Type 1 Diabetes | P.11.94 |
Mucopolysaccharidosis Type IIIA | P.10.76 , P.10.77 |
Muscular Dystrophy | P.01.8 |
Myotonic Dystrophy Type 1 | P.01.9 , P.03.19 |
Myotonic Dystrophy Type 1, Steinert Disease | P.04.23 |
Neuronal Ceroid Lipofuscinoses (NCLs) | P.10.78 |
Neutral Lipid Storage Disease | P.02.17 |
Omenn Syndrome | P.18.126 |
Osteopetrosis and Bartter's Syndrome | P.13.105 |
Parkinson's Disease | P.10.79 |
Paroxysmal Kinesigenic Dyskinesia | P.08.51 |
Phelan McDermid Syndrome | P.09.58 |
PKAN and CoPAN | P.10.80 |
Platform Technology | P.18.127 |
Polg-Related Diseases | P.04.24 |
Pompe Disease | P.11.95 |
Prion Genetic Diseases | P.10.81 |
RAG1 Severe Combined Immunodeficiency | P.20.138 |
Rare Diseases | P.28.169 , P.28.170 |
Retinitis Pigmentosa (RP) | P.16.113 , P.16.114 |
Rett Syndrome | P.09.59 |
Sarcoglycanopathies (LGMD2D-F) | P.01.10 |
Spinal and Bulbar Muscular Atrophy (SBMA) | P.04.25 , P.04.26 , P.10.82 , P.10.83 |
Spinal Muscular Atrophy | P.01.11 , P.04.27 , P.04.28 , P.04.29 |
Spinal Muscular Atrophy Type 1 | P.04.30 |
Spinocerebellar Ataxia 38 (SCA38) | P.10.84 |
Stargardt Disease, Leber Congenital Amaurosis 10 | P.16.115 |
T Cell Mediated Diseases | P.20.139 |
Tubular Aggregate Myopathy | P.02.18 |
Tymothy Syndrome | P.09.60 |
Ullrich Congenital MD; Duchenne MD | P.01.12 |
Ullrich Muscular Dystrophy; Bethlem Myopathy | P.01.13 |
Undiagnosed Diseases | P.26.154 |
Urea Cycle Disorders | P.11.96 |
Weaver Syndrome | P.09.61 |
Wilson Disease | P.11.97 , P.19.129 |
Wiskott Aldrich Syndrome | P.20.140 |
X-linked Hyper IgM Syndrome | P.18.128 |
X-linked Intellectual Disability | P.09.62 |
XLP-1 (Duncan Syndrome) | P.20.141 |
Home

Talk
Talk 1
Store-operated calcium entry (SOCE): role in skeletal muscle function and disease
Feliciano Protasi - Università degli Studi G. d'Annunzio Chieti, Pescara
Dysregulation of Ca2+ homeostasis is associated to several pathological conditions including neurodegenerative and skeletal muscle diseases. Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ entry mechanism, first described in non-excitable cells, that is triggered by depletion of intracellular Ca2+ stores (endoplasmic/sarcoplasmic reticulum, respectively ER and SR). SOCE is coordinated by the communication between: a) stromal interaction molecule-1 (STIM1), which acts as the Ca2+ sensor in the ER lumen, and b) Orai1, the Ca2+-permeable channel in the plasma membrane (PM). SOCE in skeletal muscle is similarly mediated by interactions between STIM1 and Orai1 channels and is proposed to limit muscle fatigue during repetitive stimulation. A reduction in SOCE activity was proposed to contribute to muscle impairment in aging and mutations in STIM1 and Orai1 have been linked to Tubular Aggregate Myopathy (TAM), an autosomal dominant muscle disease that is clinically characterized by myalgia, cramps and muscle stiffness, with or without proximal muscle weakness.
Despite the general agreement about the importance of SOCE in skeletal muscle function and disease, the precise subcellular sites of STIM1-Orai1 was not specifically investigated for about a decade. To give our contribute to this emerging field in muscle:
1. We discovered (using a combination of electron microscopy, immunofluorescence, immunogold, ex vivo muscle contractility, and Ca2+ imaging) that exercise promotes the formation of unique intracellular junctions that contain the molecular machinery required to activate SOCE (i.e. STIM1 and Orai1). We proposed that these not-previously-identified junctions function as Ca2+ entry units (CEUs), newly discovered organelles that i) promote recovery of extracellular Ca2+ during repetitive stimulation and ii) reduce/delay muscle fatigue optimizing muscle function.
2. As mutations in STIM1 and Orai1 have been linked to TAM (with the support of Telethon GGP19219), we are now investigating i) the mechanisms that lead to formation of Tubular Aggregates (TAs), and ii) the dysfunctional properties associated to their accrual in muscle fibers. With this goal in mind, we also generated new knock-in mice of the human disease (Orai1-G98S mice) and collected the first preliminary data.
Talk 2
Autophagy as a key pathogenic mechanism in COL6-related diseases and its significance for prospective therapies
Paolo Bonaldo, Dept. of Molecular Medicine, University of Padova
Collagen VI (COL6) is a distinctive extracellular matrix protein playing a remarkably major role in different cell processes [1]. At difference from other collagens, COL6 has a unique process of intracellular assembly involving multiple steps where different chains coded by separate genes give rise to large tetramers which once secreted form a branched network of beaded microfilaments in the matrix [1]. Mutations of COL6 genes are causative for a subclass of congenital muscular dystrophies with a broad spectrum of clinical symptoms, collectively known as ‘COL6-related myopathies', which include Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD) [2].
Several years ago we generated a COL6 knockout (Col6a1–/–) mouse, whose phenotypical defects confirmed that COL6 has a critical role for muscle homeostasis and mutations. This mouse represents a valuable animal model of BM and UCMD, and its detailed characterization provided valuable information on the pathophysiological mechanisms underlying COL6-related myopathies [3-6]. Thanks to Telethon support, we demonstrated that lack of COL6 leads to organelle defects, with mitochondrial dysfunction and spontaneous apoptosis in Col6a1–/– muscle fibers. These studies allowed to understand that the mitochondrial defects are associated with an increased opening of the permeability transition pore, which can be desensitized by cyclosporin A treatment, leading also to an amelioration of muscle structure and function in mice [3]. Notably, work in patients' samples revealed similar defects [7], thus opening the way for targeted therapeutic approaches in COL6-related myopathies. A pilot clinical trial with cyclosporin A in BM and UCMD patients showed beneficial effects in muscle cells, leading to increased myofiber survival and muscle regeneration [8].
In further studies aimed at dissecting the pathomolecular mechanisms underlying COL6-related diseases, we showed that the autophagic machinery is impaired in muscles of Col6a1–/– mice and BM/UCMD patients, leading to the accumulation of dysfunctional mitochondria and organelles and to the subsequent myofiber defects [4]. Remarkably, reactivation of autophagy in Col6a1–/– mice by different approaches (e.g., prolonged starvation or low-protein diet) is beneficial for myofiber homeostasis, leading to improved muscle strength [4]. A recent pilot clinical trial, based on a 1-year low protein diet, confirmed that autophagy can be reactivated in BM and UCMD patients, with beneficial effects in counteracting the decline of functional parameters [9]. The great advantage of targeting autophagy relies on the fact that it is easily tunable by dietary means or by different nutraceuticals, such as resveratrol and spermidine (Spd). Along this line, we recently demonstrated that in vivo Spd administration to Col6a1–/– mice, by either i.p. injection or supplement to drinking water, leads to a significantly improved muscle homeostasis [10].
We now aim at understanding in detail the therapeutic efficacy of oral Spd administration, by testing different doses and regimens and monitoring their efficacy in ameliorating muscle structure and strength in Col6a1–/– mice, as well as by evaluating the effects of Spd treatment in patients' derived cells. These studies will prove the efficacy of Spd and autophagy-targeted nutraceutical approaches for COL6-related disorders, also in the perspective of their combinatorial use with mitochondria-targeted agents in the quest for the most effective and safe therapeutic strategies for these life-threatening diseases.
References: [1] Cescon et al., J. Cell Sci. 2015; [2] Bönnemann, Nature Rev. Neurol. 2011; [3] Irwin et al., Nature Genet. 2003; [4] Grumati et al., Nature Med. 2010; [5] Urciuolo et al., Nature Comm. 2013; [6] Cescon et al., Acta Neuropathol. 2018; [7] Angelin et al., PNAS 2007; [8] Merlini et al., PNAS 2008; [9] Castagnaro et al., Autophagy 2016; [10] Chrisam et al., Autophagy 2015.
Talk 3
From reverse genetics to gene therapy: Duchenne muscular dystrophy Alessandra Ferlini, MD, PHD
Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Italy
Dubowitz Neuromuscular Unit, UCL, London, UK
Duchenne muscular dystrophy (DMD) is the most common childhood muscular dystrophy affecting ~ 1:5,000 live male births. Following the identification of the defective dystrophin gene in 1986 by reverse genetics, gene function, genotype/phenotype correlations and pathogenic mechanisms have been elucidated in skeletal, smooth and cardiac muscles as well as in the brain. Thanks to new high throughput methods, a DMD genetic definition is now fully achievable and represents a requirement in order to have clinical diagnosis confirmation, family planning and preventive measures and clinical trials access.
Indeed, advances in the understanding of the molecular pathways affected in DMD have led to both the development of multiple therapeutic strategies tackling different aspects of disease pathogenesis and recently, the approval of first successful drugs for this condition. Antisense oligonucleotides, stop codon reversion and gene therapy are now a reality and have a crucial role in changing the natural history of the disease and ultimately, the whole lives of DMD-affected boys. An overview of the DMD gene story from discovery to new treatments will be presented, with a look into the future of oncoming therapeutic approaches and their wide repercussions in the neuromuscular disease field.
Talk 4
Cross-fertilization between motor neuron disorders and muscular dystrophies: improving care and targeting treatments in Myotonic Dystrophy type 1
Valeria A. Sansone - Centro clinico Nemo, Milano
The NEMO Clinical Center, Neurorehabilitation Unit, University of Milan
Background: Motor neuron disorders and muscular dystrophies are characterized by common features like muscle atrophy, weakness, fatigue and motor functional limitations. However, pathways of care and management may differ in many respects to the extent that a specific approach and decision process needs to be implemented to target better care and cure. The NEMO Center is a multidisciplinary tertiary center for the care and cure of different neuromuscular disorders, the most frequent being motor neuron disorders and the muscular dystrophies. Myotonic dystrophies (DM1) represent 25% of the patients at the site. The diagnostic and management protocols are targeted for this patient population.
Aims: To discuss how cross-fertilization between motor neuron disorders and muscular dystrophies may improve care and contribute to targeted treatments in DM1 while creating the basis for trial readiness and endpoint assessments.
Methods: Ventilatory support, nutrition protocols and motor function assessments used in ALS and the muscular dystrophies will be described and the way these have been adapted to the care of DM1 patients will be discussed. Ongoing observational studies in both the adult and congenital and pediatric variants of DM1 will be presented as part of national and international networks. An update on targeted treatments and future therapeutic trials in this field will be discussed as well as the lessons learned from the experience with innovative therapies applied to the SMA field.
Clinical Relevance: DM1 is the most common form of adult muscular dystrophy and is perhaps the most variable amongst the different diseases in medicine, ranging from a congenital presentation, to a pediatric or adult onset for to a late-onset form. Multiple organs are involved, clinical presentation varies widely and death usually occurs between the 5th and 6th decade of life. There is still a significant diagnostic delay despite a blood draw is sufficient to identify a CTG repeat expansion > 50 which is associated with the disease.
Conclusions: There are upcoming drugs which may potentially target muscle tissue or the abnormal expansions. It is mandatory to identify appropriate outcome measures in preparation for clinical trials to improve care and target treatments in DM1.
Talk 5
Whose data are my data? Sharing and protecting personal health data
Sandra Courbier, Rare Barometer survey programme Senior Manager, EURORDIS, Paris
Michela Maggi, Data Protection Officer, Fondazione Telethon, Milan
Moderation by Lucia Monaco, Head, Research Impact and strategic analysis, Fondazione Telethon
Personal health data are a core resource for biomedical research, clinical care and patient management. Sharing health data with and among researchers and healthcare professionals is key to shortening the time to diagnosis, advancing knowledge on the disease, and progressing towards the identification and development of care and therapies.
This is particularly true for rare genetic diseases, which require matching and comparing data from affected people scattered across the globe, in order to take full advantage from the bioinformatics revolution.
Privacy protection, data stewardship, and compliance with legal regulations require engagement, competence and commitment by all parties involved.
This interactive session with the audience of patient representatives and researchers will address needs, concerns and expectations expressed by the patients' community, as well as the key principles of the European regulation on data privacy relevant to the management of health data in the research setting.
Talk 6
Omics approaches to improve diagnostics (and optimize treatment) for patients with mitochondrial disease
Daniele Ghezzi – Fondazione I.R.C.C.S Istituto Neurologico "C.Besta"
Mitochondrial disorders (MD) are a genetically heterogeneous group of individually rare human diseases characterized by energy deficiency due to mitochondrial dysfunction. MD may result from pathogenic mutations of the mitochondrial or nuclear DNA, affecting components or key factors of the oxidative phosphorylation system responsible for ATP production. MD typically are multi-organ diseases affecting high-energy demand tissues such as muscle, brain and liver. Their multi-system presentation, together with their complex genetic bases, makes molecular diagnosis difficult.
The introduction of next generation sequencing has dramatically improved diagnostic yield for MD. Nevertheless, about half of MD patients still remain without molecular diagnosis despite whole exome sequencing. More recently, additional “omics” approaches (whole genome sequencing, transcriptomics, proteomics) have been considered to investigate unsolved cases and have been proven to increase the percentage of genetic diagnoses, as well as to be useful for identifying new disease-genes.
Genetic confirmation of MD and the identification of the exact molecular defect are important for patients/families to remove uncertainty and end their diagnostic odyssey, to guide genetic counseling and family planning, but they can also be fundamental for treatment. Although an effective therapeutic strategy is still missing for most of MD, a growing subgroup is amenable to treatment with cofactors (e.g. riboflavin in patients with ACAD9 deficiency); a rapid and precise diagnosis is thus crucial for these subjects.
Integration of multiple “omics” data will allow a more comprehensive view of human diseases. In addition to improve diagnosis, “omics” are expected to guide treatment and will likely become the starting point for personalized medicine.
Talk 7
Mitochondrial disorders: from gene discovery to pathomechanisms and experimental therapy
Massimo Zeviani
University of Padova, Department of Neurosciences, Padova, Italy
Mitochondria are the major source of ATP that is synthesized by the respiratory chain through the process of oxidative phosphorylation (OXPHOS), a complex biochemical process carried out through the dual control of physically separated, but functionally interrelated, genomes, nuclear and mitochondrial DNAs. The genetic and biochemical intricacy of mitochondrial bioenergetics explains the extreme heterogeneity of mitochondrial disorders, a group of highly invalidating human conditions, for which no effective treatment is nowadays available. In addition to bioenergetic failure, other mechanisms are probably predominant in the pathogenesis of specific syndromes, such as alterations of cellular redox status, the production of reactive oxygen species, compromised Ca2+ homeostasis, mitochondrial protein and organelle quality control, and mitochondrial pathways of apoptosis. By investigating selected families and patients, we have identified several new disease genes, each responsible of distinct defects of the respiratory chain, mtDNA metabolism, or both, associated with paediatric or adult-onset clinical presentations. Structural analysis and the creation of ad hoc recombinant lines in yeast, flies, and mice have allowed us to dissect out the molecular consequences of the ablation or defects of some of these proteins, and their physical status in normal and disease conditions. These models have also been exploited to implement experimental therapeutic strategies, based on gene and cell replacement, or pharmacological control of mitochondrial biogenesis. For instance, coordinated increase of autophagy and lysosomal clearance based on inhibition of mTORC1 by rapamycin is effective to markedly prolong survival in OXPHOS impairment of brain or skeletal muscle. In addition, editing of mtDNA in a mutant mouse has been successfully achieved in our Unit through zinc-finger recombinant technology, opening the possibility to the controlled reduction of heteroplasmic load in vivo. Finally the use of new AAV vectors in vivo to convey therapeutic genes warrants promising developments for effectively crossing the BBB and targeting the CNS in mitochondrial encephalopathies.
Talk 8
miR-181a and miR-181b downregulation ameliorates mitochondrial-associated neurodegeneration by enhancing mitochondrial biogenesis and mitophagy
A Indrieri1, 2, S Carrella1, A Spaziano1, A Romano1,E Fernandez-Vizarra3, S Barbato1, M Zeviani3, EM. Surace2,E De Leonibus1, S Banfi1, B Franco1, 2
1 Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
2 Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
3 MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
Mitochondrial dysfunction underlies the pathogenesis of a variety of human neurodegenerative diseases, either directly, in the case of rare mitochondrial diseases (MDs), or indirectly, as in more common neurodegenerative disorders, such as Parkinson's disease (PD). Despite the efforts, effective therapies are still not available for these devastating conditions. We demonstrated that microRNAs miR-181a and miR-181b (miR-181a/b) regulate key genes involved in mitochondrial biogenesis and function. We also showed that these miRNAs are involved in global regulation of mitochondrial turnover in the central nervous system through the coordinated activation of mitochondrial biogenesis and mitophagy. We thus tested whether the modulation of these miRNAs could be therapeutically exploited in neurodegenerative conditions associated with primary impairment of mitochondrial activity. We first showed that miR-181a/b downregulation effectively protects neurons from cell death and significantly ameliorates the disease phenotype in different animal models of MDs, such as two medakafish models of Microphthalmia with Linear Skin Lesions, and chemical and genetic models of Leber Hereditary Optic Neuropathy1. In addition, our preliminary data also demonstrated amelioration of the disease phenotype in a mouse model of Leigh Syndrome, an often-fatal MD characterized by severe neurodegeneration. We then tested whether miR-181a/b downregulation could also be effective in chemical models of secondary mitochondrial dysfunction. To this aim we generated medakafish and murine models of PD using the neurotoxin 6-OHDA, which is widely used for this purpose. Our data demonstrate that inactivation of miR-181a/b reduces the extent of nigrostriatal dopaminergic neurons death in both models and results in improved motor performances in the mouse PD model. Altogether our results indicate that miR-181a/b act as hubs in mitochondrial homeostasis in the central nervous system. We propose these miRNAs may represent novel gene-independent therapeutic targets for a wide-range of neurodegenerative disorders caused by mitochondrial dysfunction.
1. Indrieri A, Carrella S, Romano A, Spaziano A, Marrocco E, Fernandez-Vizarra E, Barbato S, Pizzo M, Ezhova Y, Golia FM, Ciampi L, Tammaro R, Henao-Mejia J, Williams A, Flavell RA, De Leonibus E, Zeviani M, Surace EM, Banfi S, Franco B. EMBO Mol Med. 2019 May;11(5). pii: e8734. doi: 10.15252/emmm.201708734.
Talk 9
Mitochondria as signaling hubs in neurodegeneration
Beatrice D'Orsi1, Luisa Galla1,2, Elisa Greotti1,2, Edward Beamer3, Mariana Alves3, Tobias Engel3, Paola Pizzo1,2, Diego De Stefani1, Tullio Pozzan1,2,4 and Rosario Rizzuto1
1Department of Biomedical Sciences, University of Padova, Padova, Italy.
2 Neuroscience Institute - Italian National Research Council (CNR), Padova, Italy;
3 Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
4 Venetian Institute of Molecular Medicine, Padova, Italy.
In Alzheimer 's disease (AD), the role of genetic mutations in the pathogenesis is firmly established, despite their role in determining neuronal dysfunction and death is still unknown. Mitochondrial Ca2+ overload has been proposed as the no-return signal triggering neuronal death, and we have demonstrated that familial AD (FAD) due to PS2 mutations favors Ca2+ transfer from the endoplasmic reticulum (ER) to mitochondria. Recently, the molecular nature of the mitochondrial Ca2+ channel was unveiled, allowing the investigation of the role of mitochondrial Ca2+ dysregulation by new genetic tools. Our final goal is to test the genuine contribution of mitochondrial Ca2+ overload to FAD pathogenesis.
To do this, we compared mRNA profiles of the neurotransmitters, cell death pathways and MCU complex (MCUC) components between wild type (WT) and PS2-N141I/APPswe (PS2APP) mouse brains, during disease progression. We included PS2KO mice to test if the hypothesis of a loss-of-function phenotype associated to FAD-PS1 mutations Cn be extended also to FAD-PS2 mutations. PCR arrays reveal an early transcriptional impairment in PS2APP and PS2KO brains, with a non-overlapping profile between them. An early remodelling of the MCU complex was also evident, with a significant up-regulation of the MCUC enhancers. Given the transcriptional remodelling of excitatory neurotransmission, cytosolic Ca2+ dynamics of hippocampal slices have been studied. An altered NMDA-induced Ca2+ signalling is evident in 1.5-month-old PS2APP and PS2KO mice. Mitochondrial Ca2+ handling is currently under investigation.
As mentioned above, we found increased mRNA levels of genes involved in cell death, together with an up-regulated expression of MCU enhancers. We manipulated MCU protein levels to investigate how mitochondrial Ca2+ handling controls neuronal death. Since only MCU+/- mice are viable and fertile with no evident phenotype, we employed primary neuronal cultures from MCU+/+ and MCU+/- mice. The latter display a decreased mitochondrial Ca2+ uptake and neuronal death in response to NMDA-induced excitotoxicity. We could not detect a decreased cell death when neurons were exposed to a milder and transient NMDA stimulus. In line with this, increasing mitochondrial Ca2+ levels by overexpressing of MCU is per se sufficient to cause neuronal death in situ and to trigger gliosis and neuronal loss in vivo. Accordingly, MCU+/- mice were more resistant to excitotoxicity in vivo, protecting neurons from kainite acid-induced injury (a model of epilepsy).
In summary, our results suggest that a substantial rearrangement of gene expression occurs early in PS2APP and PS2KO mice, especially of those involved in Ca2+ homeostasis and cell death regulation, with no evidence of a loss-of function phenotype associated to FAD-PS2 mutations. Furthermore, we provided important new insights into the role of MCU in neuronal excitotoxicity both in situ and in vivo.
Talk 10
How can C.elegans worm your way into the study of genetic diseases
Elia Di Schiavi
Institute of Bioscience and BioResources, IBBR, CNR, Naples
Studying genetic diseases in animal models has been crucial to understand human disease pathogenesis, the function played by mutated genes and to identify potential therapies. Among the most diffused animal models, invertebrates such as C.elegans, allowed rapid analyses of the molecular mechanisms leading to diseases and the identification of new potential therapeutic targets in several diseases (e.g. SMA, obesity, Huntington)(Ashrafi et al., Nature 2003; Grice et al., BioEssays 2011; Parker et al., Nature genetics 2005). Moreover C.elegans lead to the discovery of basic processes that unexpectedly became fundamental to set new strategies to cure human diseases (e.g. RNA-interference, miRNAs, apoptotic pathway). This has been acknowledged by the Nobel Prize awarding Institutions that awarded several times the prize to researchers working with C.elegans, including prizes for Medicine. The use of C.elegans as a model for human diseases provides: a) a powerful, easy and rapid system to directly assess the consequences of mutations at the organismal level, in vivo; b) the unique advantage of visualizing individual cells in living transparent animals; c) more than 70% of disease genes presenting an ortholog. Importantly, the use of C.elegans allows to strongly reducing the number of vertebrate animals used, fulfilling the 3Rs principles (Replacing the use of mammals; Reducing the number of mammals used to a minimum; Refining the way experiments are carried out). Moreover, the use of an invertebrate model has few ethical concerns for the public and for private foundations donors and is highly supported by EU (Resolution on the protection of animals used for scientific purposes, 5/05/2009) and Italian legislation (DL N°26, March 4th, 2014). These advantages together with the small dimensions (1 mm), the high rate of fertility and hermaphroditism (300 isogenic progeny per animal) and very cheap costs, have recently caused an expansion of its use also to high troughput screenings for toxicological studies (NIEHS National Toxicology Program), to improve diagnosis and care of patients with undiagnosed diseases (NIH Undiagnosed Diseases Network) and for drug discovery. The work from several C.elegans laboratories, including Telethon Grantees, will be presented to demonstrate the power of C.elegans to study genetic diseases and to show how “As incredible as it seems, future research on flies and worms will quite often provide the shortest and most efficient path to curing human disease” (Alberts, Science 2010).
Talk 11
One by one: convergence, multiplexing and single-cell resolution in the study of neurodevelopmental disorders through brain organoids
Giuseppe Testa
Università degli Studi di Milano and Istituto Europeo di Oncologia (IEO), Milano
Talk 12
Organs-on-Chips: the promises and limits of microfluidics
Diego Di Bernardo
Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Napoli)
Animal models recapitulate human diseases and are still necessary to transform lab-based discovery into actual therapies for patients, starting from basic research into disease mechanisms, going into proof-of-principle studies and culminating in pre-clinical studies prior to clinical trials in human patients. In the course of the presentation I will illustrate efforts ongoing world-wide to reduce the need of animal models in biomedical research, including alternative models based on organ-on-chip and organoids and their advantages and current limitations.
Talk 13
Expanding AAV transfer capacity in the retina
Alberto Auricchio, MD
Telethon Institute of Genetics and Medicine (TIGEM) and Medical Genetics, Dept. of Advanced Biomedicine, University of Naples "Federico II", Italy
Inherited retinal degenerations (IRDs) are a major cause of blindness worldwide. In vivo retinal gene therapy with adeno-associated viral (AAV) vectors has emerged as an effective and safe strategy to counteract retinal neurodegeneration associated with IRDs. Indeed the first approved gene therapy product for an ocular disease is based on AAV. However, the DNA cargo capacity of AAV vectors is limited to about 5 kb which precludes their application to IRDs due to mutations in genes with a coding sequence (CDS) larger than 5 kb, e.g. Stargardt disease or Usher syndrome type IB. To overcome this limitation, we have developed two different strategies based on the co-delivery of two AAV vectors each containing one half of a large gene CDS. In one strategy, recombination occurs between the genomes of the two AAV vectors leading to the reconstitution of a single large expression cassette. In another strategy, the two AAV vectors separately encode for the two half polypeptides of large protein which undergo protein trans-splicing mediated by split inteins which results in reconstitution of the full length protein. Advantages and limitations of each system will be discussed as well as their application to gene therapy of IRDs.
Talk 14
Targeting common cell death pathways for the neuroprotection of degenerating photoreceptors
Marigo Valeria (1), Comitato Antonella (1), Subramanian Preeti (2), Becerra, S. Patricia (2)
(1) Department of Life Sciences, University of Modena and Reggio Emilia
(2) National Institute of Health, National Eye Institute, USA
Retinitis pigmentosa (RP) is a form of retinal degeneration (RD) and a major cause for legal blindness during working age. Over 70 different genes have been associated with RP. This genetic heterogeneity has hampered the development of therapeutic interventions, but therapies based on neuroprotection, targeting common denominators activated in different forms of RD, could benefit a large cohort of patients. Pigment epithelium-derived factor (PEDF) is a natural protein in the eye with potent retinoprotective properties and high potential to be applied in retinal degeneration therapeutics.
We have characterized the molecular pathways targeted by PEDF in murine models of RP and found that PEDF acts on PMCA calcium pumps, present at the plasma membrane of rod photoreceptors, facilitating the decrease of intracellular calcium, a key player in photoreceptor cell death (1). Reduced levels of intracellular calcium limit the activation of calpains, calcium regulated proteases, that during degeneration activate Bax and the Apoptosis Inducing Factor (AIF) as triggers of photoreceptor cell death (2). We also identified a small protein domain (17 amino acids) in the PEDF molecule that mediates the neuroprotective activity of the factor (3).
Given that smaller molecules can be more permeable and facilitate delivery with limited side effects, likely caused by other regions of the entire molecule, we tested mutagenized small peptides, derived from the neurotrophic region of PEDF, that retain binding affinity for PEDF receptor but increase the neuroprotective activity. This study identified a small peptide of 17 amino acids, with a mutation in the histidine 105 into an alanine (17mer[H105A]), with enhanced neuroprotective activity compared to PEDF (3). We have delivered the 17mer[H105A] in the retina of murine models of RP via an AAV vector, a virus recently approved for gene therapy in the eye. The neuroprotective effects of intravitreal or subretinal injections of the therapeutic virus were analyzed histologically and electrophysiologically.
1. Comitato A., Subramanian P., Turchiano G., Montanari M., Becerra S.P., Marigo V. (2018) Pigment epithelium-derived factor (PEDF) hinders photoreceptor cell death by reducing intracellular calcium in the degenerating retina. Cell Death & Disease 9: 560.
2. Comitato A., Schiroli D., Montanari M., Marigo V. (2019) Calpain Activation Is the Major Cause of Cell Death in Photoreceptors Expressing a Rhodopsin Misfolding Mutation. Molecular Neurobiology, in press.
3. Kenealey J., Subramanian P., Comitato A., Bullock J, Keehan L., Polato F., Hoover D., Marigo V., Becerra S.P. (2015) Small Retinoprotective Peptides Reveal a Receptor Binding Region on Pigment Epithelium-derived Factor. Journal of Biological Chemistry 290:25241-25253.
Talk 15
Cone dystrophies and retinal degeneration from protein structures to biological networks
Daniele Dell'Orco
Department of Neurosciences, Biomedicine and Movement Sciences - Section of Biological Chemistry - University of Verona
Cone dystrophy (COD) is a severe form of retinal disorder affecting photoreceptors, the cells where the visual signal originates. Common symptoms include decreased central and color vision and photophobia. In several patients, cone degeneration is followed by that of rods (CORD), which results in the progressive loss in peripheral vision. Currently, no cure exists for CORD, which affects 1 in 40,000 people. To date, up to 20 missense mutations in GUCA1A, the gene encoding the calcium sensor guanylate-cyclase-activating protein (GCAP1) have been associated with autosomal dominant COD/CORD. The consequence of alterations in GCAP1 have been only partly explored and mechanisms leading to the onset of the disease remain largely unclear, although a connection with the dysregulation of intracellular cGMP and Ca2+ homeostasis has been established. Human GCAP1 variants associated with COD/CORD and their interaction with the target GC were thoroughly characterized by biochemical, biophysical and electrophysiological approaches, which have all been integrated by computer simulations. Under physiological conditions GCAP1 presents a dynamic monomer-dimer equilibrium that renders its crystallization process particularly tricky. SAXS studies corroborated by protein docking simulations allowed the building of a three-dimensional model of the GCAP1 dimer. A thorough structural and functional characterization was performed of the previously known COD-associated variants affecting the Ca2+ binding sites, namely p.E155A/G and p.D100G. All variants show a constitutive activation of the GC target at physiological concentrations of Ca2+ and altered affinity for Ca2+. Finally, a novel GCAP1variant (p.E111V) associated with a severe form of CORD has been identified in an Italian family and the protein has been fully characterized.
Nano-sized liposomes with lipid composition mimicking that of photoreceptor outer segment were produced and their biodistribution was investigated in mouse retina both ex-vivo and following intra-vitreal injections. The liposomes fuse with retinal membranes and reach all layers including photoreceptor outer segments. When encapsulated with E111V-GCAP1 and delivered in vivo and ex vivo, liposomes perturbed the photoresponses of mouse photoreceptors in a way consistent with numerical simulations of the phototransduction cascade, thus opening the way to powerful tools for testing protein therapeutics hypotheses based on in vivo delivery of recombinant wild-type protein.
Talk 16
Inhibition of autophagy curtails visual loss in a model of autosomal dominant optic atrophy
Luca Scorrano – University Padova
In Autosomal Dominant Optic Atrophy (ADOA) caused by mutations in the mitochondrial cristae biogenesis and fusion protein Optic Atrophy 1 (Opa1), retinal ganglion cell (RGC) dysfunction and visual loss occur by unknown mechanisms. Here we show an unexpected role for autophagosome accumulation at RGC axonal hillocks in ADOA pathogenesis. Expression of mutated Opa1 in RGCs causes heterogenous mitochondrial dysfunction and triggers AMPK- and tubulin acetylation dependent autophagosome accumulation at axonal hillocks, reducing axonal mitochondrial content. Pharmacological or genetic inhibition of this pathway restores axonal mitochondrial content and curtails apoptosis caused by mutated Opa1. In C. elegans, deletion of AMPK or of key autophagy genes rescues axonal mitochondrial content reduced in neurons where mitochondrial dysfunction was induced. In conditional, RGC specific Opa1-deficient mice, depletion of the essential autophagy gene Atg7 normalizes the excess autophagy and corrects the visual defects caused by Opa1 ablation. Thus, axonal hillock accumulation of autophagosomes is a conserved mechanism crucial for ADOA pathogenesis.
Store-operated calcium entry (SOCE): role in skeletal muscle function and disease
Feliciano Protasi - Università degli Studi G. d'Annunzio Chieti, Pescara
Dysregulation of Ca2+ homeostasis is associated to several pathological conditions including neurodegenerative and skeletal muscle diseases. Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ entry mechanism, first described in non-excitable cells, that is triggered by depletion of intracellular Ca2+ stores (endoplasmic/sarcoplasmic reticulum, respectively ER and SR). SOCE is coordinated by the communication between: a) stromal interaction molecule-1 (STIM1), which acts as the Ca2+ sensor in the ER lumen, and b) Orai1, the Ca2+-permeable channel in the plasma membrane (PM). SOCE in skeletal muscle is similarly mediated by interactions between STIM1 and Orai1 channels and is proposed to limit muscle fatigue during repetitive stimulation. A reduction in SOCE activity was proposed to contribute to muscle impairment in aging and mutations in STIM1 and Orai1 have been linked to Tubular Aggregate Myopathy (TAM), an autosomal dominant muscle disease that is clinically characterized by myalgia, cramps and muscle stiffness, with or without proximal muscle weakness.
Despite the general agreement about the importance of SOCE in skeletal muscle function and disease, the precise subcellular sites of STIM1-Orai1 was not specifically investigated for about a decade. To give our contribute to this emerging field in muscle:
1. We discovered (using a combination of electron microscopy, immunofluorescence, immunogold, ex vivo muscle contractility, and Ca2+ imaging) that exercise promotes the formation of unique intracellular junctions that contain the molecular machinery required to activate SOCE (i.e. STIM1 and Orai1). We proposed that these not-previously-identified junctions function as Ca2+ entry units (CEUs), newly discovered organelles that i) promote recovery of extracellular Ca2+ during repetitive stimulation and ii) reduce/delay muscle fatigue optimizing muscle function.
2. As mutations in STIM1 and Orai1 have been linked to TAM (with the support of Telethon GGP19219), we are now investigating i) the mechanisms that lead to formation of Tubular Aggregates (TAs), and ii) the dysfunctional properties associated to their accrual in muscle fibers. With this goal in mind, we also generated new knock-in mice of the human disease (Orai1-G98S mice) and collected the first preliminary data.
Talk 2
Autophagy as a key pathogenic mechanism in COL6-related diseases and its significance for prospective therapies
Paolo Bonaldo, Dept. of Molecular Medicine, University of Padova
Collagen VI (COL6) is a distinctive extracellular matrix protein playing a remarkably major role in different cell processes [1]. At difference from other collagens, COL6 has a unique process of intracellular assembly involving multiple steps where different chains coded by separate genes give rise to large tetramers which once secreted form a branched network of beaded microfilaments in the matrix [1]. Mutations of COL6 genes are causative for a subclass of congenital muscular dystrophies with a broad spectrum of clinical symptoms, collectively known as ‘COL6-related myopathies', which include Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD) [2].
Several years ago we generated a COL6 knockout (Col6a1–/–) mouse, whose phenotypical defects confirmed that COL6 has a critical role for muscle homeostasis and mutations. This mouse represents a valuable animal model of BM and UCMD, and its detailed characterization provided valuable information on the pathophysiological mechanisms underlying COL6-related myopathies [3-6]. Thanks to Telethon support, we demonstrated that lack of COL6 leads to organelle defects, with mitochondrial dysfunction and spontaneous apoptosis in Col6a1–/– muscle fibers. These studies allowed to understand that the mitochondrial defects are associated with an increased opening of the permeability transition pore, which can be desensitized by cyclosporin A treatment, leading also to an amelioration of muscle structure and function in mice [3]. Notably, work in patients' samples revealed similar defects [7], thus opening the way for targeted therapeutic approaches in COL6-related myopathies. A pilot clinical trial with cyclosporin A in BM and UCMD patients showed beneficial effects in muscle cells, leading to increased myofiber survival and muscle regeneration [8].
In further studies aimed at dissecting the pathomolecular mechanisms underlying COL6-related diseases, we showed that the autophagic machinery is impaired in muscles of Col6a1–/– mice and BM/UCMD patients, leading to the accumulation of dysfunctional mitochondria and organelles and to the subsequent myofiber defects [4]. Remarkably, reactivation of autophagy in Col6a1–/– mice by different approaches (e.g., prolonged starvation or low-protein diet) is beneficial for myofiber homeostasis, leading to improved muscle strength [4]. A recent pilot clinical trial, based on a 1-year low protein diet, confirmed that autophagy can be reactivated in BM and UCMD patients, with beneficial effects in counteracting the decline of functional parameters [9]. The great advantage of targeting autophagy relies on the fact that it is easily tunable by dietary means or by different nutraceuticals, such as resveratrol and spermidine (Spd). Along this line, we recently demonstrated that in vivo Spd administration to Col6a1–/– mice, by either i.p. injection or supplement to drinking water, leads to a significantly improved muscle homeostasis [10].
We now aim at understanding in detail the therapeutic efficacy of oral Spd administration, by testing different doses and regimens and monitoring their efficacy in ameliorating muscle structure and strength in Col6a1–/– mice, as well as by evaluating the effects of Spd treatment in patients' derived cells. These studies will prove the efficacy of Spd and autophagy-targeted nutraceutical approaches for COL6-related disorders, also in the perspective of their combinatorial use with mitochondria-targeted agents in the quest for the most effective and safe therapeutic strategies for these life-threatening diseases.
References: [1] Cescon et al., J. Cell Sci. 2015; [2] Bönnemann, Nature Rev. Neurol. 2011; [3] Irwin et al., Nature Genet. 2003; [4] Grumati et al., Nature Med. 2010; [5] Urciuolo et al., Nature Comm. 2013; [6] Cescon et al., Acta Neuropathol. 2018; [7] Angelin et al., PNAS 2007; [8] Merlini et al., PNAS 2008; [9] Castagnaro et al., Autophagy 2016; [10] Chrisam et al., Autophagy 2015.
Talk 3
From reverse genetics to gene therapy: Duchenne muscular dystrophy Alessandra Ferlini, MD, PHD
Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, Italy
Dubowitz Neuromuscular Unit, UCL, London, UK
Duchenne muscular dystrophy (DMD) is the most common childhood muscular dystrophy affecting ~ 1:5,000 live male births. Following the identification of the defective dystrophin gene in 1986 by reverse genetics, gene function, genotype/phenotype correlations and pathogenic mechanisms have been elucidated in skeletal, smooth and cardiac muscles as well as in the brain. Thanks to new high throughput methods, a DMD genetic definition is now fully achievable and represents a requirement in order to have clinical diagnosis confirmation, family planning and preventive measures and clinical trials access.
Indeed, advances in the understanding of the molecular pathways affected in DMD have led to both the development of multiple therapeutic strategies tackling different aspects of disease pathogenesis and recently, the approval of first successful drugs for this condition. Antisense oligonucleotides, stop codon reversion and gene therapy are now a reality and have a crucial role in changing the natural history of the disease and ultimately, the whole lives of DMD-affected boys. An overview of the DMD gene story from discovery to new treatments will be presented, with a look into the future of oncoming therapeutic approaches and their wide repercussions in the neuromuscular disease field.
Talk 4
Cross-fertilization between motor neuron disorders and muscular dystrophies: improving care and targeting treatments in Myotonic Dystrophy type 1
Valeria A. Sansone - Centro clinico Nemo, Milano
The NEMO Clinical Center, Neurorehabilitation Unit, University of Milan
Background: Motor neuron disorders and muscular dystrophies are characterized by common features like muscle atrophy, weakness, fatigue and motor functional limitations. However, pathways of care and management may differ in many respects to the extent that a specific approach and decision process needs to be implemented to target better care and cure. The NEMO Center is a multidisciplinary tertiary center for the care and cure of different neuromuscular disorders, the most frequent being motor neuron disorders and the muscular dystrophies. Myotonic dystrophies (DM1) represent 25% of the patients at the site. The diagnostic and management protocols are targeted for this patient population.
Aims: To discuss how cross-fertilization between motor neuron disorders and muscular dystrophies may improve care and contribute to targeted treatments in DM1 while creating the basis for trial readiness and endpoint assessments.
Methods: Ventilatory support, nutrition protocols and motor function assessments used in ALS and the muscular dystrophies will be described and the way these have been adapted to the care of DM1 patients will be discussed. Ongoing observational studies in both the adult and congenital and pediatric variants of DM1 will be presented as part of national and international networks. An update on targeted treatments and future therapeutic trials in this field will be discussed as well as the lessons learned from the experience with innovative therapies applied to the SMA field.
Clinical Relevance: DM1 is the most common form of adult muscular dystrophy and is perhaps the most variable amongst the different diseases in medicine, ranging from a congenital presentation, to a pediatric or adult onset for to a late-onset form. Multiple organs are involved, clinical presentation varies widely and death usually occurs between the 5th and 6th decade of life. There is still a significant diagnostic delay despite a blood draw is sufficient to identify a CTG repeat expansion > 50 which is associated with the disease.
Conclusions: There are upcoming drugs which may potentially target muscle tissue or the abnormal expansions. It is mandatory to identify appropriate outcome measures in preparation for clinical trials to improve care and target treatments in DM1.
Talk 5
Whose data are my data? Sharing and protecting personal health data
Sandra Courbier, Rare Barometer survey programme Senior Manager, EURORDIS, Paris
Michela Maggi, Data Protection Officer, Fondazione Telethon, Milan
Moderation by Lucia Monaco, Head, Research Impact and strategic analysis, Fondazione Telethon
Personal health data are a core resource for biomedical research, clinical care and patient management. Sharing health data with and among researchers and healthcare professionals is key to shortening the time to diagnosis, advancing knowledge on the disease, and progressing towards the identification and development of care and therapies.
This is particularly true for rare genetic diseases, which require matching and comparing data from affected people scattered across the globe, in order to take full advantage from the bioinformatics revolution.
Privacy protection, data stewardship, and compliance with legal regulations require engagement, competence and commitment by all parties involved.
This interactive session with the audience of patient representatives and researchers will address needs, concerns and expectations expressed by the patients' community, as well as the key principles of the European regulation on data privacy relevant to the management of health data in the research setting.
Talk 6
Omics approaches to improve diagnostics (and optimize treatment) for patients with mitochondrial disease
Daniele Ghezzi – Fondazione I.R.C.C.S Istituto Neurologico "C.Besta"
Mitochondrial disorders (MD) are a genetically heterogeneous group of individually rare human diseases characterized by energy deficiency due to mitochondrial dysfunction. MD may result from pathogenic mutations of the mitochondrial or nuclear DNA, affecting components or key factors of the oxidative phosphorylation system responsible for ATP production. MD typically are multi-organ diseases affecting high-energy demand tissues such as muscle, brain and liver. Their multi-system presentation, together with their complex genetic bases, makes molecular diagnosis difficult.
The introduction of next generation sequencing has dramatically improved diagnostic yield for MD. Nevertheless, about half of MD patients still remain without molecular diagnosis despite whole exome sequencing. More recently, additional “omics” approaches (whole genome sequencing, transcriptomics, proteomics) have been considered to investigate unsolved cases and have been proven to increase the percentage of genetic diagnoses, as well as to be useful for identifying new disease-genes.
Genetic confirmation of MD and the identification of the exact molecular defect are important for patients/families to remove uncertainty and end their diagnostic odyssey, to guide genetic counseling and family planning, but they can also be fundamental for treatment. Although an effective therapeutic strategy is still missing for most of MD, a growing subgroup is amenable to treatment with cofactors (e.g. riboflavin in patients with ACAD9 deficiency); a rapid and precise diagnosis is thus crucial for these subjects.
Integration of multiple “omics” data will allow a more comprehensive view of human diseases. In addition to improve diagnosis, “omics” are expected to guide treatment and will likely become the starting point for personalized medicine.
Talk 7
Mitochondrial disorders: from gene discovery to pathomechanisms and experimental therapy
Massimo Zeviani
University of Padova, Department of Neurosciences, Padova, Italy
Mitochondria are the major source of ATP that is synthesized by the respiratory chain through the process of oxidative phosphorylation (OXPHOS), a complex biochemical process carried out through the dual control of physically separated, but functionally interrelated, genomes, nuclear and mitochondrial DNAs. The genetic and biochemical intricacy of mitochondrial bioenergetics explains the extreme heterogeneity of mitochondrial disorders, a group of highly invalidating human conditions, for which no effective treatment is nowadays available. In addition to bioenergetic failure, other mechanisms are probably predominant in the pathogenesis of specific syndromes, such as alterations of cellular redox status, the production of reactive oxygen species, compromised Ca2+ homeostasis, mitochondrial protein and organelle quality control, and mitochondrial pathways of apoptosis. By investigating selected families and patients, we have identified several new disease genes, each responsible of distinct defects of the respiratory chain, mtDNA metabolism, or both, associated with paediatric or adult-onset clinical presentations. Structural analysis and the creation of ad hoc recombinant lines in yeast, flies, and mice have allowed us to dissect out the molecular consequences of the ablation or defects of some of these proteins, and their physical status in normal and disease conditions. These models have also been exploited to implement experimental therapeutic strategies, based on gene and cell replacement, or pharmacological control of mitochondrial biogenesis. For instance, coordinated increase of autophagy and lysosomal clearance based on inhibition of mTORC1 by rapamycin is effective to markedly prolong survival in OXPHOS impairment of brain or skeletal muscle. In addition, editing of mtDNA in a mutant mouse has been successfully achieved in our Unit through zinc-finger recombinant technology, opening the possibility to the controlled reduction of heteroplasmic load in vivo. Finally the use of new AAV vectors in vivo to convey therapeutic genes warrants promising developments for effectively crossing the BBB and targeting the CNS in mitochondrial encephalopathies.
Talk 8
miR-181a and miR-181b downregulation ameliorates mitochondrial-associated neurodegeneration by enhancing mitochondrial biogenesis and mitophagy
A Indrieri1, 2, S Carrella1, A Spaziano1, A Romano1,E Fernandez-Vizarra3, S Barbato1, M Zeviani3, EM. Surace2,E De Leonibus1, S Banfi1, B Franco1, 2
1 Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
2 Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
3 MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
Mitochondrial dysfunction underlies the pathogenesis of a variety of human neurodegenerative diseases, either directly, in the case of rare mitochondrial diseases (MDs), or indirectly, as in more common neurodegenerative disorders, such as Parkinson's disease (PD). Despite the efforts, effective therapies are still not available for these devastating conditions. We demonstrated that microRNAs miR-181a and miR-181b (miR-181a/b) regulate key genes involved in mitochondrial biogenesis and function. We also showed that these miRNAs are involved in global regulation of mitochondrial turnover in the central nervous system through the coordinated activation of mitochondrial biogenesis and mitophagy. We thus tested whether the modulation of these miRNAs could be therapeutically exploited in neurodegenerative conditions associated with primary impairment of mitochondrial activity. We first showed that miR-181a/b downregulation effectively protects neurons from cell death and significantly ameliorates the disease phenotype in different animal models of MDs, such as two medakafish models of Microphthalmia with Linear Skin Lesions, and chemical and genetic models of Leber Hereditary Optic Neuropathy1. In addition, our preliminary data also demonstrated amelioration of the disease phenotype in a mouse model of Leigh Syndrome, an often-fatal MD characterized by severe neurodegeneration. We then tested whether miR-181a/b downregulation could also be effective in chemical models of secondary mitochondrial dysfunction. To this aim we generated medakafish and murine models of PD using the neurotoxin 6-OHDA, which is widely used for this purpose. Our data demonstrate that inactivation of miR-181a/b reduces the extent of nigrostriatal dopaminergic neurons death in both models and results in improved motor performances in the mouse PD model. Altogether our results indicate that miR-181a/b act as hubs in mitochondrial homeostasis in the central nervous system. We propose these miRNAs may represent novel gene-independent therapeutic targets for a wide-range of neurodegenerative disorders caused by mitochondrial dysfunction.
1. Indrieri A, Carrella S, Romano A, Spaziano A, Marrocco E, Fernandez-Vizarra E, Barbato S, Pizzo M, Ezhova Y, Golia FM, Ciampi L, Tammaro R, Henao-Mejia J, Williams A, Flavell RA, De Leonibus E, Zeviani M, Surace EM, Banfi S, Franco B. EMBO Mol Med. 2019 May;11(5). pii: e8734. doi: 10.15252/emmm.201708734.
Talk 9
Mitochondria as signaling hubs in neurodegeneration
Beatrice D'Orsi1, Luisa Galla1,2, Elisa Greotti1,2, Edward Beamer3, Mariana Alves3, Tobias Engel3, Paola Pizzo1,2, Diego De Stefani1, Tullio Pozzan1,2,4 and Rosario Rizzuto1
1Department of Biomedical Sciences, University of Padova, Padova, Italy.
2 Neuroscience Institute - Italian National Research Council (CNR), Padova, Italy;
3 Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
4 Venetian Institute of Molecular Medicine, Padova, Italy.
In Alzheimer 's disease (AD), the role of genetic mutations in the pathogenesis is firmly established, despite their role in determining neuronal dysfunction and death is still unknown. Mitochondrial Ca2+ overload has been proposed as the no-return signal triggering neuronal death, and we have demonstrated that familial AD (FAD) due to PS2 mutations favors Ca2+ transfer from the endoplasmic reticulum (ER) to mitochondria. Recently, the molecular nature of the mitochondrial Ca2+ channel was unveiled, allowing the investigation of the role of mitochondrial Ca2+ dysregulation by new genetic tools. Our final goal is to test the genuine contribution of mitochondrial Ca2+ overload to FAD pathogenesis.
To do this, we compared mRNA profiles of the neurotransmitters, cell death pathways and MCU complex (MCUC) components between wild type (WT) and PS2-N141I/APPswe (PS2APP) mouse brains, during disease progression. We included PS2KO mice to test if the hypothesis of a loss-of-function phenotype associated to FAD-PS1 mutations Cn be extended also to FAD-PS2 mutations. PCR arrays reveal an early transcriptional impairment in PS2APP and PS2KO brains, with a non-overlapping profile between them. An early remodelling of the MCU complex was also evident, with a significant up-regulation of the MCUC enhancers. Given the transcriptional remodelling of excitatory neurotransmission, cytosolic Ca2+ dynamics of hippocampal slices have been studied. An altered NMDA-induced Ca2+ signalling is evident in 1.5-month-old PS2APP and PS2KO mice. Mitochondrial Ca2+ handling is currently under investigation.
As mentioned above, we found increased mRNA levels of genes involved in cell death, together with an up-regulated expression of MCU enhancers. We manipulated MCU protein levels to investigate how mitochondrial Ca2+ handling controls neuronal death. Since only MCU+/- mice are viable and fertile with no evident phenotype, we employed primary neuronal cultures from MCU+/+ and MCU+/- mice. The latter display a decreased mitochondrial Ca2+ uptake and neuronal death in response to NMDA-induced excitotoxicity. We could not detect a decreased cell death when neurons were exposed to a milder and transient NMDA stimulus. In line with this, increasing mitochondrial Ca2+ levels by overexpressing of MCU is per se sufficient to cause neuronal death in situ and to trigger gliosis and neuronal loss in vivo. Accordingly, MCU+/- mice were more resistant to excitotoxicity in vivo, protecting neurons from kainite acid-induced injury (a model of epilepsy).
In summary, our results suggest that a substantial rearrangement of gene expression occurs early in PS2APP and PS2KO mice, especially of those involved in Ca2+ homeostasis and cell death regulation, with no evidence of a loss-of function phenotype associated to FAD-PS2 mutations. Furthermore, we provided important new insights into the role of MCU in neuronal excitotoxicity both in situ and in vivo.
Talk 10
How can C.elegans worm your way into the study of genetic diseases
Elia Di Schiavi
Institute of Bioscience and BioResources, IBBR, CNR, Naples
Studying genetic diseases in animal models has been crucial to understand human disease pathogenesis, the function played by mutated genes and to identify potential therapies. Among the most diffused animal models, invertebrates such as C.elegans, allowed rapid analyses of the molecular mechanisms leading to diseases and the identification of new potential therapeutic targets in several diseases (e.g. SMA, obesity, Huntington)(Ashrafi et al., Nature 2003; Grice et al., BioEssays 2011; Parker et al., Nature genetics 2005). Moreover C.elegans lead to the discovery of basic processes that unexpectedly became fundamental to set new strategies to cure human diseases (e.g. RNA-interference, miRNAs, apoptotic pathway). This has been acknowledged by the Nobel Prize awarding Institutions that awarded several times the prize to researchers working with C.elegans, including prizes for Medicine. The use of C.elegans as a model for human diseases provides: a) a powerful, easy and rapid system to directly assess the consequences of mutations at the organismal level, in vivo; b) the unique advantage of visualizing individual cells in living transparent animals; c) more than 70% of disease genes presenting an ortholog. Importantly, the use of C.elegans allows to strongly reducing the number of vertebrate animals used, fulfilling the 3Rs principles (Replacing the use of mammals; Reducing the number of mammals used to a minimum; Refining the way experiments are carried out). Moreover, the use of an invertebrate model has few ethical concerns for the public and for private foundations donors and is highly supported by EU (Resolution on the protection of animals used for scientific purposes, 5/05/2009) and Italian legislation (DL N°26, March 4th, 2014). These advantages together with the small dimensions (1 mm), the high rate of fertility and hermaphroditism (300 isogenic progeny per animal) and very cheap costs, have recently caused an expansion of its use also to high troughput screenings for toxicological studies (NIEHS National Toxicology Program), to improve diagnosis and care of patients with undiagnosed diseases (NIH Undiagnosed Diseases Network) and for drug discovery. The work from several C.elegans laboratories, including Telethon Grantees, will be presented to demonstrate the power of C.elegans to study genetic diseases and to show how “As incredible as it seems, future research on flies and worms will quite often provide the shortest and most efficient path to curing human disease” (Alberts, Science 2010).
Talk 11
One by one: convergence, multiplexing and single-cell resolution in the study of neurodevelopmental disorders through brain organoids
Giuseppe Testa
Università degli Studi di Milano and Istituto Europeo di Oncologia (IEO), Milano
Talk 12
Organs-on-Chips: the promises and limits of microfluidics
Diego Di Bernardo
Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Napoli)
Animal models recapitulate human diseases and are still necessary to transform lab-based discovery into actual therapies for patients, starting from basic research into disease mechanisms, going into proof-of-principle studies and culminating in pre-clinical studies prior to clinical trials in human patients. In the course of the presentation I will illustrate efforts ongoing world-wide to reduce the need of animal models in biomedical research, including alternative models based on organ-on-chip and organoids and their advantages and current limitations.
Talk 13
Expanding AAV transfer capacity in the retina
Alberto Auricchio, MD
Telethon Institute of Genetics and Medicine (TIGEM) and Medical Genetics, Dept. of Advanced Biomedicine, University of Naples "Federico II", Italy
Inherited retinal degenerations (IRDs) are a major cause of blindness worldwide. In vivo retinal gene therapy with adeno-associated viral (AAV) vectors has emerged as an effective and safe strategy to counteract retinal neurodegeneration associated with IRDs. Indeed the first approved gene therapy product for an ocular disease is based on AAV. However, the DNA cargo capacity of AAV vectors is limited to about 5 kb which precludes their application to IRDs due to mutations in genes with a coding sequence (CDS) larger than 5 kb, e.g. Stargardt disease or Usher syndrome type IB. To overcome this limitation, we have developed two different strategies based on the co-delivery of two AAV vectors each containing one half of a large gene CDS. In one strategy, recombination occurs between the genomes of the two AAV vectors leading to the reconstitution of a single large expression cassette. In another strategy, the two AAV vectors separately encode for the two half polypeptides of large protein which undergo protein trans-splicing mediated by split inteins which results in reconstitution of the full length protein. Advantages and limitations of each system will be discussed as well as their application to gene therapy of IRDs.
Talk 14
Targeting common cell death pathways for the neuroprotection of degenerating photoreceptors
Marigo Valeria (1), Comitato Antonella (1), Subramanian Preeti (2), Becerra, S. Patricia (2)
(1) Department of Life Sciences, University of Modena and Reggio Emilia
(2) National Institute of Health, National Eye Institute, USA
Retinitis pigmentosa (RP) is a form of retinal degeneration (RD) and a major cause for legal blindness during working age. Over 70 different genes have been associated with RP. This genetic heterogeneity has hampered the development of therapeutic interventions, but therapies based on neuroprotection, targeting common denominators activated in different forms of RD, could benefit a large cohort of patients. Pigment epithelium-derived factor (PEDF) is a natural protein in the eye with potent retinoprotective properties and high potential to be applied in retinal degeneration therapeutics.
We have characterized the molecular pathways targeted by PEDF in murine models of RP and found that PEDF acts on PMCA calcium pumps, present at the plasma membrane of rod photoreceptors, facilitating the decrease of intracellular calcium, a key player in photoreceptor cell death (1). Reduced levels of intracellular calcium limit the activation of calpains, calcium regulated proteases, that during degeneration activate Bax and the Apoptosis Inducing Factor (AIF) as triggers of photoreceptor cell death (2). We also identified a small protein domain (17 amino acids) in the PEDF molecule that mediates the neuroprotective activity of the factor (3).
Given that smaller molecules can be more permeable and facilitate delivery with limited side effects, likely caused by other regions of the entire molecule, we tested mutagenized small peptides, derived from the neurotrophic region of PEDF, that retain binding affinity for PEDF receptor but increase the neuroprotective activity. This study identified a small peptide of 17 amino acids, with a mutation in the histidine 105 into an alanine (17mer[H105A]), with enhanced neuroprotective activity compared to PEDF (3). We have delivered the 17mer[H105A] in the retina of murine models of RP via an AAV vector, a virus recently approved for gene therapy in the eye. The neuroprotective effects of intravitreal or subretinal injections of the therapeutic virus were analyzed histologically and electrophysiologically.
1. Comitato A., Subramanian P., Turchiano G., Montanari M., Becerra S.P., Marigo V. (2018) Pigment epithelium-derived factor (PEDF) hinders photoreceptor cell death by reducing intracellular calcium in the degenerating retina. Cell Death & Disease 9: 560.
2. Comitato A., Schiroli D., Montanari M., Marigo V. (2019) Calpain Activation Is the Major Cause of Cell Death in Photoreceptors Expressing a Rhodopsin Misfolding Mutation. Molecular Neurobiology, in press.
3. Kenealey J., Subramanian P., Comitato A., Bullock J, Keehan L., Polato F., Hoover D., Marigo V., Becerra S.P. (2015) Small Retinoprotective Peptides Reveal a Receptor Binding Region on Pigment Epithelium-derived Factor. Journal of Biological Chemistry 290:25241-25253.
Talk 15
Cone dystrophies and retinal degeneration from protein structures to biological networks
Daniele Dell'Orco
Department of Neurosciences, Biomedicine and Movement Sciences - Section of Biological Chemistry - University of Verona
Cone dystrophy (COD) is a severe form of retinal disorder affecting photoreceptors, the cells where the visual signal originates. Common symptoms include decreased central and color vision and photophobia. In several patients, cone degeneration is followed by that of rods (CORD), which results in the progressive loss in peripheral vision. Currently, no cure exists for CORD, which affects 1 in 40,000 people. To date, up to 20 missense mutations in GUCA1A, the gene encoding the calcium sensor guanylate-cyclase-activating protein (GCAP1) have been associated with autosomal dominant COD/CORD. The consequence of alterations in GCAP1 have been only partly explored and mechanisms leading to the onset of the disease remain largely unclear, although a connection with the dysregulation of intracellular cGMP and Ca2+ homeostasis has been established. Human GCAP1 variants associated with COD/CORD and their interaction with the target GC were thoroughly characterized by biochemical, biophysical and electrophysiological approaches, which have all been integrated by computer simulations. Under physiological conditions GCAP1 presents a dynamic monomer-dimer equilibrium that renders its crystallization process particularly tricky. SAXS studies corroborated by protein docking simulations allowed the building of a three-dimensional model of the GCAP1 dimer. A thorough structural and functional characterization was performed of the previously known COD-associated variants affecting the Ca2+ binding sites, namely p.E155A/G and p.D100G. All variants show a constitutive activation of the GC target at physiological concentrations of Ca2+ and altered affinity for Ca2+. Finally, a novel GCAP1variant (p.E111V) associated with a severe form of CORD has been identified in an Italian family and the protein has been fully characterized.
Nano-sized liposomes with lipid composition mimicking that of photoreceptor outer segment were produced and their biodistribution was investigated in mouse retina both ex-vivo and following intra-vitreal injections. The liposomes fuse with retinal membranes and reach all layers including photoreceptor outer segments. When encapsulated with E111V-GCAP1 and delivered in vivo and ex vivo, liposomes perturbed the photoresponses of mouse photoreceptors in a way consistent with numerical simulations of the phototransduction cascade, thus opening the way to powerful tools for testing protein therapeutics hypotheses based on in vivo delivery of recombinant wild-type protein.
Talk 16
Inhibition of autophagy curtails visual loss in a model of autosomal dominant optic atrophy
Luca Scorrano – University Padova
In Autosomal Dominant Optic Atrophy (ADOA) caused by mutations in the mitochondrial cristae biogenesis and fusion protein Optic Atrophy 1 (Opa1), retinal ganglion cell (RGC) dysfunction and visual loss occur by unknown mechanisms. Here we show an unexpected role for autophagosome accumulation at RGC axonal hillocks in ADOA pathogenesis. Expression of mutated Opa1 in RGCs causes heterogenous mitochondrial dysfunction and triggers AMPK- and tubulin acetylation dependent autophagosome accumulation at axonal hillocks, reducing axonal mitochondrial content. Pharmacological or genetic inhibition of this pathway restores axonal mitochondrial content and curtails apoptosis caused by mutated Opa1. In C. elegans, deletion of AMPK or of key autophagy genes rescues axonal mitochondrial content reduced in neurons where mitochondrial dysfunction was induced. In conditional, RGC specific Opa1-deficient mice, depletion of the essential autophagy gene Atg7 normalizes the excess autophagy and corrects the visual defects caused by Opa1 ablation. Thus, axonal hillock accumulation of autophagosomes is a conserved mechanism crucial for ADOA pathogenesis.
VI CONVEGNO DELLE ASSOCIAZIONI AMICHE
PRESENTAZIONI ORALI
Fondazione Telethon e le Associazioni di pazienti: un percorso insieme
Francesca Pasinelli – Direttore Generale di Fondazione Telethon
Telethon nasce nel 1990 dalla volontà di una comunità di pazienti e familiari, assumendosi un ruolo di responsabilità sociale, dove la valorizzazione della ricerca coincide con la valorizzazione del paziente.
Il progetto collettivo che porta avanti da allora, si fonda su un ecosistema in cui cooperano diversi portatori di interesse, che condividono valori e intenti per un comune obiettivo: la cura delle malattie genetiche rare.
A guidare l'operato della Fondazione è la volontà di far sì che i pazienti si sentano garantiti da una ricerca di qualità, che i donatori sappiano come sono investiti i loro soldi e che i ricercatori siano valutati e sostenuti per competenza e impegno.
Per assicurare il mantenimento di un corretto equilibrio tra questi diversi attori, Telethon garantisce la trasparenza e l'autonomia di ciascun soggetto rispetto agli altri, in tre ambiti fondamentali: nel sistema di finanziamento (che assicura la giusta distanza tra chi chiede, chi decide e chi eroga), nelle strategie operative (dove nessuna pressione politica o commerciale deve condizionare le scelte e gli obiettivi), nel rispetto delle regole della scienza (che impongono qualità, rigore, pazienza e costante confronto internazionale, evitando le promesse di soluzioni miracolose e immediate).
Fondazione Telethon mira quindi alla creazione di alleanze e di partnership coi pazienti, con le aziende farmaceutiche e con le istituzioni regolatorie, cercando di ampliare sempre di più il tavolo di lavoro e creando un modello condiviso da parte di tutti gli attori, per ottimizzare il processo e definire modalità efficaci che permettano anche di gestire fattori limitanti (quali tempo e denaro). Vuole infatti trovare terapie e renderle sostenibili, per entrare in una dimensione fattuale dove, negoziando adozioni di un nuovo sviluppo regolatorio, si possa ridurre il percorso necessario per arrivare alla diagnosi, all'individuazione delle terapie e alla loro messa a disposizione dei pazienti, pur mantenendo inalterata la qualità.
Eccellenza, trasparenza e innovazione: le tre caratteristiche della ricerca da finanziare
Manuela Battaglia – Direzione Scientifica di Fondazione Telethon
Fondazione Telethon è un ente senza scopo di lucro - riconosciuto dal Ministero dell'Istruzione, dell'Università e della Ricerca - che si impegna ogni giorno per fare avanzare la ricerca biomedica verso la cura delle malattie genetiche rare che, proprio per la loro rarità, sono trascurate dai grandi investimenti pubblici e industriali.
Per essere efficace la Fondazione basa la propria strategia su un metodo rigoroso per selezionare le migliori idee, sostenere le attività di ricerca e tradurre i risultati raggiunti in vantaggi concreti per i pazienti. A questo processo è applicato un sistema certificato di gestione della qualità che rappresenta un modello unico tra gli Enti che finanziano ricerca in Italia.
Fondazione Telethon utilizza un metodo di finanziamento che si basa sulla valutazione dell'eccellenza scientifica affidata ad un gruppo di esperti di caratura internazionale: un gruppo di 30 ricercatori (i.e., la commissione medico scientifica) che si avvale a sua volta dell'aiuto specialistico di oltre 8000 scienziati. Fondazione Telethon, con l'impiego di una squadra dedicata in modo permanente, garantisce competenza e indipendenza nella gestione del processo di valutazione. L'elevata qualità scientifica della ricerca finanziata da Fondazione è provata dai risultati scientifici finora ottenuti che sono riconosciuti a livello internazionale e che hanno avuto un impatto decisivo sulla vita di pazienti provenienti da tutto il mondo. Questi risultati concreti confermano anche la bontà dei sistemi di selezione adottati.
Grazie al modello implementato, oggi Fondazione Telethon è riconosciuta come una delle realtà che contribuisce a livello internazionale all'avanzamento della ricerca biomedica sulle malattie genetiche rare. Non esistono scorciatoie in ricerca: la creazione di competenze uniche e processi trasparenti e di qualità sono fondamentale per il raggiungimento della cura.
Valorizzazione del percorso e dei risultati della ricerca
Annamaria Merico – Trasferimento Tecnologico di Fondazione Telethon
Simona Varani – Proprietà Intellettuale di Fondazione Telethon
Università, ospedali e centri di ricerca conducono ricerche che generano invenzioni rivoluzionarie, salvano vite e migliorano il modo in cui viviamo e lavoriamo tutti i giorni. Il trasferimento tecnologico ha un ruolo fondamentale nel condurre queste idee dal laboratorio al mercato: richiede competenze specifiche affinché le scoperte sviluppate nelle accademie vengano protette e tramite accordi con l'industria generino prodotti e servizi. Alcune invenzioni hanno successo, altre no; alcune vengono trasferite ad industrie esistenti, altre portano alla creazione di nuove aziende, che a loro volta portano alla creazione di nuovi posti di lavoro e ad un circolo virtuoso di innovazione. Vi sono vari passaggi chiave e sfide in questo processo: averne consapevolezza per chi lavora o ha interesse nell'ambito della ricerca facilita il processo e favorisce il successo.
Di chi sono i miei dati? La condivisione e la protezione dei dati sanitari personali
Sandra Courbier – Eurordis, Paris
Michela Maggi – Data Protection Officer (DPO) di Fondazione Telethon
Lucia Monaco – Responsabile Centro Studi di Fondazione Telethon
I dati sanitari personali sono una risorsa centrale per la ricerca biomedica, l'assistenza clinica e la gestione del paziente. La condivisione dei dati sanitari con e tra ricercatori e professionisti sanitari è indispensabile per abbreviare i tempi della diagnosi, per l'avanzamento della conoscenza sulla malattia e per i progressi nell'identificare e sviluppare trattamenti e terapie.
Questo è particolarmente vero per le malattie genetiche rare, che richiedono il collegamento e il confronto di dati da pazienti sparsi in tutto il globo per poter beneficiare appieno della rivoluzione bioinformatica.
La protezione della privacy, la gestione dei dati e l'applicazione delle norme di legge necessitano di coinvolgimento, competenza ed impegno da tutti gli attori interessati.
Questa sessione interattiva con il pubblico dei rappresentanti dei pazienti e dei ricercatori affronterà i bisogni, le preoccupazioni e le aspettative espressi dalla comunità dei pazienti, come pure i principi del regolamento europeo sulla privacy rilevanti per la gestione dei dati sanitari in contesto di ricerca.
Biobanche: avvertenze e modalità d'uso
Luca Sangiorgi - Coordinatore Reti Biobanche di Fondazione Telethon
La presentazione, mutuando l'impostazione di un bugiardino per farmaci, illustrerà la descrizione (principio attivo), destinazione d'uso, modalità d'uso, posologia, controindicazioni, interazioni e tutti gli effetti indesiderati sperimentalmente raccolti e segnalati dagli utilizzatori di biobanche e registri nel mondo delle malattie rare.
Per uscire dal buio: il progetto Malattie senza diagnosi
Vincenzo Nigro – Partner fondatore del progetto "Malattie senza diagnosi"
Angelo Selicorni – Partner fondatore del progetto "Malattie senza diagnosi"
Per dare una risposta a pazienti senza diagnosi e iniziare a colmare questo bisogno Telethon ha ideato il programma "Malattie Senza Diagnosi"
Nonostante i numerosi sforzi della comunità medico-scientifica e i progressi dell'analisi del Dna, esistono ancora migliaia di malattie genetiche rarissime e con cause sconosciute che rimangono non diagnosticabili. Secondo Orphanet, a fronte di oltre 7500 malattie rare conosciute (l'80% delle quali di origine genetica), sono disponibili test diagnostici soltanto per circa 4200 di esse.
È proprio per colmare questo bisogno che Telethon ha avviato questo programma, che coinvolge una rete di centri clinici italiani di riferimento per la genetica medica e un centro di ricerca, l'Istituto Telethon di genetica e medicina di Pozzuoli, dalla consolidata esperienza nelle tecniche di sequenziamento di nuova generazione (Next Generation Sequencing). Ottenere una diagnosi è il punto di partenza per chiunque soffra di una malattia genetica: permette di dare un nome alla propria malattia, di individuare altri casi simili nel mondo da cui dedurre come evolverà, ma anche di avere più informazioni per gestire sia la quotidianità sia le situazioni di emergenza, e programmare controlli medici adeguati.
Essere coinvolti in questo programma rappresenta un'opportunità in più per chi oggi non ha una diagnosi: con quasi 700 casi ricevuti, ad oggi abbiamo identificati i geni causativi in circa il 40% dei pazienti coinvolti, con una resa diagnostica paragonabile a quella di altri programmi internazionali. È tuttavia probabile che le percentuali di successo aumentino progressivamente nel corso degli anni grazie agli avanzamenti della ricerca biomedica e attraverso la rianalisi periodica dei dati. Inoltre, le informazioni ottenute sono conservate nel database del progetto: è quindi possibile che una risposta possa arrivare successivamente, grazie al confronto con dati presenti in altri database internazionali.
Poster
01_Genetic muscular disease\Muscular dystrophies
P.01.1 | A NATION-WIDE ITALIAN REGISTRY FOR PATIENTS WITH MUSCULAR DYSTROPHIES AND MYOPATHIES |
Bruno C. * [2] , D'Amico A. [1] , Comi G. [3] , Tupler R. [4] | |
[1] BAMBINO GESU' HOSPITAL ~ ROMA ~ Italy, [2] G.GASLINI INSTITUTE ~ GEONVA ~ Italy, [3] Fondazione I.R.C.C.S. Ca’ Granda Ospedale Maggiore Policlinico ~ MILANO ~ Italy, [4] Università degli Studi di Modena e Reggio Emilia ~ MODENA ~ Italy | |
P.01.10 | SMALL MOLECULES TO RESCUE FOLDING-DEFECTIVE SARCOGLYCANS: IN VIVO ASSESSMENT OF NOVEL THERAPEUTIC STRATEGIES |
Sandona' D. * [1] , Scano M. [1] , Fecchio C. [1] , Carotti M. [1] , Soardi M. [1] , Risato G. [1] , Sacchetto R. [2] | |
[1] Dep. of Biomedical Sciences (University of Padova) ~ Padova ~ Italy, [2] Dept. Comparative Biomedicine and Food Science (University of Padova) ~ Legnaro (Padova) ~ Italy | |
P.01.11 | SMN-PRIMED RIBOSOMES MODULATE THE TRANSLATION OF TRANSCRIPTS RELATED TO SPINAL MUSCULAR ATROPHY |
Viero G. * [1] , Lauria F. [1] , Bernabò P. [1] , Tebaldi T. [2] , Groen E. [3] , Perenthaler E. [1] , Massimiliano C. [4] , Maniscalco F. [1] , Marchioretto M. [1] , Dalla Serra M. [1] , Inga A. [2] , Quattrone A. [2] , Gillingwater T. [3] | |
[1] Institute of Biophysics CNR ~ Trento ~ Italy, [2] University of Trento ~ Trento ~ Italy, [3] Edinburgh Medical School ~ Edinburgh ~ United Kingdom, [4] Immagina Biotech ~ Trento ~ Italy | |
P.01.12 | A MITOCHONDRIAL THERAPY FOR MUSCULAR DYSTROPHIES |
Bernardi P. * | |
Università di Padova ~ Padova ~ Italy | |
P.01.13 | SPERMIDINE AS NEW CANDIDATE FOR THE TREATMENT OF COL6 MYOPATHIES (SPECTRE-COL6) |
Castagnaro S. * [1] , Gambarotto L. [1] , Metti S. [1] , Da Ros F. [1] , Sabatelli P. [3] , Basso D. [2] , Bonaldo P. [1] | |
[1] University of Padova, Dept. of Molecular Medicine ~ Padova ~ Italy, [2] University Hospital Padova, Dept. of Medicine ~ Padova ~ Italy, [3] Rizzoli Hospital, IGM-CNR, Laboratory of Molecular Genetics ~ Bologna ~ Italy | |
P.01.2 | UPDATE ON THE BON-DMD (GUP11011) STUDY: THE BIOCHEMICAL MARKERS |
Broggi F. * [1] , Vai S. [2] , Bianchi M. L. [2] | |
[1] Laboratorio Analisi Cliniche, Centro di Ricerche e Tecnologie Biomediche, Istituto Auxologico Italiano IRCCS, Milano ~ Milano ~ Italy, [2] Laboratorio Sperimentale di Ricerche sul Metabolismo Osseo Infantile, Unità Metabolismo Osseo, Istituto Auxologico Italiano IRCCS, Milano ~ Milano ~ Italy | |
P.01.3 | DETRIMENTAL ROLE OF COMPLEMENT C1/WNT AXIS IN DYSTROPHIC MUSCLE |
Florio F. *, Papa F. , Libergoli M. , Accordini S. , Gharat V. , Biressi S. | |
1 Dulbecco Telethon Institute, University of Trento ~ Trento ~ Italy | |
P.01.4 | IDENTIFICATION OF A TWO NOVEL SUBPOPULATIONS OF SATELLITE CELLS WITH DIFFERENT KINETICS OF ACTIVATION |
Libergoli M. * [1] , Kheir E. [1] , Florio F. [1] , Torrente Y. [2] , Biressi S. [1] | |
[1] Dulbecco Telethon Institute, CIBio, University of Trento ~ Trento ~ Italy, [2] 3 Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico ~ Milan ~ Italy | |
P.01.5 | A POSSIBLE STRATEGY TO INDUCE EXON 45 SKIPPING IN DMD-D44 PATIENTS THROUGH THE MODULATION OF CELF2A SPLICING FACTOR |
Martone J. * [1] , Lisi M. [1] , Castagnetti F. [1] , Rosa A. [2] , Di Carlo V. [3] , Sthandier O. [1] , Di Croce L. [3] , Bozzoni I. [1] | |
[1] Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Italy ~ Rome ~ Italy, [2] Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy ~ rome ~ Italy, [3] Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain. ~ Barcelona ~ Spain | |
P.01.6 | EXTRACELLULAR ATP AND T REGULATORY CELLS: NEW THERAPEUTICS TARGETS IN ALPHA-SARCOGLYCAN DEFICIENT MUSCULAR DYSTROPHY (LGMD2D) |
Baratto S. * [1] , Principi E. [1] , Del Zotto G. [2] , Antonini F. [2] , Panicucci C. [1] , Ognio E. [3] , Bruzzone S. [4] , Benzi A. [4] , Gazzerro E. [5] , Minetti C. [6] , Raffaghello L. [1] , Bruno C. [1] | |
[1] Center of Translational and Experimental Myology, Istituto Giannina Gaslini ~ Genova ~ Italy, [2] Department of Research and Diagnostics, Istituto G. Gaslini ~ Genova ~ Italy, [3] Animal Facility, IRCSS Ospedale Policlinico San Martino ~ Genova ~ Italy, [4] Department of Experimental Medicine, Section of Biochemistry, University of Genoa ~ Genova ~ Italy, [5] Charité Universität-Experimental and Clinical Research Center ~ Berlin ~ Germany, [6] Pediatric Neurology and Muscle Disease Unit, Istituto Giannina Gaslini ~ Genova ~ Italy | |
P.01.7 | MODULATION OF THE CYCLIN INHIBITOR P27 TO AMELIORATE MEROSIN DEFICIENT CONGENITAL MUSCULAR DYSTROPHY (MDC1A) |
Previtali S. C. *, Porrello E. , Tonlorenzi R. , Bonaccorso R. | |
Ospedale San Raffaele ~ Milano ~ Italy | |
P.01.8 | USEFUL: USER- CENTRED ASSISTIVE SYSTEM FOR ARM FUNCTIONS IN NEUROMUSCULAR SUBJECTS |
Pedrocchi A. * [1] , Gandolla M. [1] , Longatelli V. [1] , Antonietti A. [1] , D'Angelo G. [2] , Biffi E. [2] , Diella E. [2] , Molteni F. [3] , Rossini M. [3] | |
[1] Politecnico di Milano ~ Milano ~ Italy, [2] Scientific Institute “Eugenio Medea” ~ Bosisio Parini ~ Italy, [3] Villa Beretta Rehabilitation Center ~ Costa Masnaga ~ Italy | |
P.01.9 | GENE EDITING IN MYOTONIC DYSTROPHY TYPE 1: ASSESSMENT OF EFFICIENCY, SAFETY AND THERAPEUTIC EFFECT OF CTG-REPEAT DELETION IN A MOUSE MODEL OF DISEASE |
Falcone G. * [1] , Provenzano C. [1] , Cardinali B. [1] , Perfetti A. [2] , Mandillo S. [1] , Golini E. [1] , Strimpakos G. [1] , Voellenkle C. [2] , Longo M. [2] , Martelli F. [2] | |
[1] Institute of Cell Biology and Neurobiology, National Research Council ~ Monterotondo (RM) ~ Italy, [2] Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato ~ San Donato Milanese (MI) ~ Italy |
02_Genetic muscular disease\Myopathies and cardiomyopathies
P.02.14 | REMODELING OF MITOCHONDRIAL FUNCTION AND GENE EXPRESSION IN CORE MYOPATHY PATIENTS |
Suman M. * [1] , Menegollo M. [1] , Muntoni F. [2] , Duchen M. [3] , Pegoraro E. [4] , Szabadkai G. [1] | |
[1] Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy ~ Padova ~ Italy, [2] Institute of Child Health, University College London ~ London ~ United Kingdom, [3] University College London, Department of Cell and Developmental Biology ~ London ~ United Kingdom, [4] Neuromuscular Unit, Department of Neuroscience, University of Padova ~ Padova ~ Italy | |
P.02.15 | A NOVEL IN VITRO DUCHENNE MUSCULAR DYSTROPHY CARDIOMYOPATHY MODEL: HUMAN IPSC-DERIVED CARDIOMYOCYTES FOR MECHANISTIC STUDIES |
Pioner J. M. * [1] , Santini L. [2] , Palandri C. [2] , Martella D. [3] , Lupi F. [3] , Langione M. [1] , Querceto S. [1] , Grandinetti B. [3] , Balducci V. [2] , Mazzantini C. [1] , Donati M. A. [4] , Sartiani L. [2] , Tesi C. [1] , Cerbai E. [2] , Poggesi C. [1] , Parmeggiani C. [3] , Coppini R. [2] , Sacconi L. [3] , Ferrantini C. [1] | |
[1] Dipartimento di Medicina Sperimentale e Clinica, Div. di Scienze Fisiologiche, Università degli studi di Firenze ~ Firenze ~ Italy, [2] Dipartimento di NeuroFarBa, Università degli studi di Firenze, ~ Firenze ~ Italy, [3] European Laboratory for Non-Linear Spectroscopy ~ Sesto Fiorentino ~ Italy, [4] Metabolic and Neuromuscular Unit, AOU Meyer Hospital ~ Firenze ~ Italy | |
P.02.16 | DEVELOPING TOOLS FOR TRIAL READINESS IN PRIMARY MITOCHONDRIAL MYOPATHIES OF THE ADULTHOOD |
Siciliano G. * [1] , Montano V. [1] , Ricci G. [2] , Mancuso M. [1] | |
[1] Neurological Institute, Dept of Clinical and Experimental Medicine, University of Pisa ~ PISA ~ Italy, [2] ~ Italy | |
P.02.17 | CLINICAL, MOLECULAR AND PATHOGENETIC STUDIES OF NEUTRAL LIPID STORAGE DISEASE (NLSD) |
Tavian D. * [3] , Pennisi E. M. [1] , Musarò A. [2] , Arca M. [2] , Angelini C. [4] | |
[1] San Filippo Neri Hospital ~ Roma ~ Italy, [2] Sapienza Università di Roma ~ Roma ~ Italy, [3] Università Cattolica ~ Milano ~ Italy, [4] S. Camillo Hospital ~ Padova ~ Italy | |
P.02.18 | STORE-OPERATED CALCIUM ENTRY (SOCE): ROLE IN SKELETAL MUSCLE FUNCTION AND DISEASE. |
Protasi F. * [1] , Sorrentino V. [2] | |
[1] Univ. G. d'Annunzio Chieti-Pescara ~ Chieti ~ Italy, [2] Università degli Studi di Siena ~ Siena ~ Italy |
03_Genetic muscular disease\Myotonic disorders
P.03.19 | SKELETAL MUSCLE AND CIRCULATING MICRORNAS IN MYOTONIC DYSTROPHY TYPE 1 |
Martelli F. * [1] , Perfetti A. [1] , Cardinali B. [2] , Cappella M. [2] , Fuschi P. [1] , Provenzano C. [2] , Voellenkle C. [1] , Cardani R. [1] , Garcia-manteiga J. M. [3] , Meola G. [1] , Falcone G. [2] | |
[1] IRCCS-Policlinico San Donato ~ San Donato Milanese ~ Italy, [2] Institute of Cell Biology and Neurobiology, National Research Council ~ Monterotondo, Roma ~ Italy, [3] IRCCS San Raffaele Scientific Institute ~ Milano ~ Italy |
04_Genetic neurological disorder\Neuromuscular diseases
P.04.20 | MODULATING NEUREGULIN-1 SIGNALS TO TREAT HEREDITARY DEMYELINATING NEUROPATHIES |
Taveggia C. * [1] , Bolino A. [1] , Previtali S. C. [1] , D'Antonio M. [2] | |
[1] Division of Neuroscience and INSPE, Fondazione Centro San Raffaele ~ Milano ~ Italy, [2] Division of Genetics and Cell Biology, Fondazione Centro San Raffaele ~ Milano ~ Italy | |
P.04.21 | GENE THERAPY AND LONG TERM EVALUATION OF DIFFERENT DIETARY REGIMENS IN A GLYCOGEN STORAGE DISEASE TYPE III KO MOUSE MODEL |
Pagliarani S. * [1] , Lucchiari S. [1] , Vidal P. [3] , Ripolone M. [2] , Fortunato F. [1] , Moggio M. [2] , Ronzitti G. [3] , Mingozzi F. [3] , Comi G. [1] | |
[1] Università degli Studi di Milano ~ Milan ~ Italy, [2] Ospedale Maggiore Policlinico Milano ~ Milano ~ Italy, [3] INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay ~ Evry ~ France | |
P.04.22 | MITMED CONSORTIUM: FROM THE IDENTIFICATION AND CHARACTERIZATION OF NUCLEAR GENES RESPONSIBLE FOR HUMAN MITOCHONDRIAL DISORDERS TOWARDS POTENTIAL THERAPEUTIC APPROACHES IN EXPERIMENTAL MODELS |
Ghezzi D. * [1] , Nasca A. [1] , Legati A. [1] , Lamantea E. [1] , Lamperti C. [1] , Baruffini E. [2] , Dallabona C. [2] , Lodi T. [2] , Goffrini P. [2] , Brischigliaro M. [3] , Corrà S. [3] , De Pittà C. [3] , Martorano L. [3] , Tiso N. [3] , Argenton F. [3] , Donnini C. [2] , Costa R. [3] | |
[1] Fondazione IRCCS Istituto Neurologico Besta ~ Milano ~ Italy, [2] University of Parma ~ Parma ~ Italy, [3] University of Padova ~ Padova ~ Italy | |
P.04.23 | CLINICAL EFFICACY OF NIV AND MODAFINIL ON EXCESSIVE DAYTIME SLEEPINESS: LESSONS LEARNED FROM A MULTICENTER, RANDOMIZED, DOUBLE-BLIND, PLACEBO-CONTROLLED CLINICAL TRIAL IN DM1 |
Sansone V. * [1] , Mauro L. [2] , Ferrari Aggradi C. [2] , Proserpio P. [4] , Massa R. [5] , Frezza E. [5] , Greco G. [5] , Rubino A. [4] , Spanetta M. [6] , Romigi A. [6] , Izzi F. [7] , Placidi F. [7] , Liguori C. [7] , Nobili L. [4] , Pirola A. [2] , Cattaneo F. [3] | |
[1] Neurorehabilitation Unit, University of Milan ~ Milan ~ Italy, [2] The NEMO Clinical Center ~ Milano ~ Italy, [3] ~ Italy, [4] Sleep Medicine, Dept. Neuroscience, Niguarda Hospital ~ Milan ~ Italy, [5] Neurology Dept. University of Rome Tor Vergata ~ Rome ~ Italy, [6] Neuromed ~ Pozzilli ~ Italy, [7] Sleep Medicine, University of Rome Tor Vergata ~ Rome ~ Italy | |
P.04.24 | PRE-CLINICAL IDENTIFICATION OF DRUGS TARGETING POLG DISORDERS BY USING A ZEBRAFISH/YEAST TRANS-SPECIES APPROACH (ZIPPY) |
Tiso N. * [3] , Baruffini E. [1] , Lodi T. [1] , Donnini C. [1] , Delahodde A. [2] , Beffagna G. [4] , Facchinello N. [3] , Argenton F. [3] | |
[1] Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma ~ Parma ~ Italy, [2] Institute for Integrative Biology of the Cell, Université Paris-Sud ~ Orsay ~ France, [3] Department of Biology, University of Padova ~ Padova ~ Italy, [4] Department of Cardio-Thoraco-Vascular Sciences and Public Health ~ Padova ~ Italy | |
P.04.25 | REGISTRY FOR TRIAL READINESS IN SPINAL AND BULBAR MUSCLE ATROPHY |
Fenu S. * [1] , Soraru' G. [2] , Mariotti C. [1] , Sabatelli M. [3] , Querin G. [2] , Gellera C. [1] , Conte A. [3] , Calabrese D. [1] , Chiapparini L. [1] , Aquino D. [1] , Filosto M. [4] , Casali C. [5] , Silani V. [6] , Riva N. [7] , Mora G. [8] , Lunetta C. [9] , Giannini F. [10] , Bisogni G. [3] , Vitelli E. [11] , Montesano M. [1] , Pareyson D. [1] | |
[1] Fondazione IRCCS Istituto Neurologico Carlo Besta ~ MILANO ~ Italy, [2] Università di Padova ~ Padova ~ Italy, [3] Policlinico Agostino Gemelli ~ Roma ~ Italy, [4] ASST Spedali Civili di Brescia ~ Brescia ~ Italy, [5] Università La Sapienza ~ Roma ~ Italy, [6] Istituto Auxologico Italiano ~ MILANO ~ Italy, [7] Ospedale San Raffaele ~ Milano ~ Italy, [8] Fondazione IRCCS Salvatore Maugeri ~ Milano ~ Italy, [9] Centro Clinico Nemo ~ Milano ~ Italy, [10] Azienda Ospedaliera Universitaria Senese ~ Siena ~ Italy, [11] Ospedale di Lodi ~ Lodi ~ Italy | |
P.04.26 | PHOSPHORYLATION-MEDIATED CHANGES OF ANDROGEN RECEPTOR STRUCTURE AND FUNCTION IN SPINAL AND BULBAR MUSCULAR ATROPHY PATHOGENESIS |
Pennuto M. * [4] , Piol D. [1] , Tosatto L. [2] , Minervini G. [1] , Lia F. [1] , Basso M. [2] , Tosatto S. [1] , Pandey U. [3] , Zuccaro E. [4] | |
[1] University of Padova ~ Padova ~ Italy, [2] University of Trento ~ Trento ~ Italy, [3] University of Pittsburg ~ Pittsburg ~ United States of America, [4] ~ Italy | |
P.04.27 | DEVELOPMENT OF A PREDICTIVE BODY FAT EQUATION FOR SPINAL MUSCULAR ATROPHY TYPE I CHILDREN |
Foppiani A. * [1] , De Amicis R. [1] , Leone A. [1] , Battezzati A. [1] , Ravella S. [1] , Bassano M. [1] , Bertini E. S. [3] , Baranello G. [4] , Pedemonte M. [5] , Agosto C. [6] , Masson R. [7] , Ester G. [8] , Mastella C. [9] , Bruno C. [5] , Bertoli S. [2] | |
[1] ICANS, DeFENS, University of Milan ~ Milan ~ Italy, [2] ICANS, DeFENS, University of Milan - IRCCS Istituto Auxologico Italiano, Obesity Unit and Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases ~ Milan ~ Italy, [3] Unità di Malattie Neuromuscolari e Neurodegenerative, Laboratorio di Medicina Molecolare, Dipartimento di Neuroscienze e Neuroriabilitazione, IRCCS Ospedale Pediatrico Bambino Gesù ~ Roma ~ Italy, [4] The Dubowitz Neuromuscular Centre, UCL NIHR GOSH Biomedical Research Centre, Great Ormond Street Institute of Child Health - Fondazione IRCCS Istituto Neurologico "Carlo Besta" ~ London ~ United Kingdom, [5] Dipartimento di Neuroscienze e Riabilitazione, Istituto Giannina Gaslini ~ Genova ~ Italy, [6] Pediatric Palliative Care - Pain Service, Department of Woman and Child Health, University of Padova ~ Padova ~ Italy, [7] Fondazione IRCCS Istituto Neurologico "Carlo Besta" ~ Milano ~ Italy, [8] Servizio di Dietetica e Nutrizione Aziendale, Dipartimento Cure Primarie, Servizio Sanitario Regionale Emilia Romagna, ASL Cesena ~ Cesena ~ Italy, [9] SAPRE, Dipartimento di Neuroscienze e di Salute Mentale, Fondazione IRCCS Cà Grande, Ospedale Maggiore Policlinico ~ Milan ~ Italy | |
P.04.28 | IDENTIFICATION OF NEW DRUGGABLE TARGETS AND POTENTIAL THERAPEUTIC COMPOUNDS FOR SPINAL MUSCULAR ATROPHY, USING A C.ELEGANS MODEL OF NEURODEGENERATION |
Di Schiavi E. *, Santonicola P. , Cieri F. , La Rocca F. , Gallotta I. , Zampi G. | |
IBBR ~ NAPOLI ~ Italy | |
P.04.29 | CELL PENETRATING PEPTIDE-CONJUGATED MORPHOLINO FOR TREATMENT OF SMA SYMPTOMATIC CASES |
Nizzardo M. * [1] , Pagliari E. [1] , Rizzuti M. [2] , Bersani M. [1] , Ramirez A. [1] , Bordoni A. [2] , Taiana M. [1] , Bresolin N. [1] , Comi G. [1] , Corti S. [1] | |
[1] Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy ~ Milan ~ Italy, [2] IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico ~ Milan ~ Italy | |
P.04.30 | ANTHROPOMETRIC STANDARDS IN NAÏVE PATIENTS WITH SPINAL MUSCULAR ATROPHY TYPE 1. |
De Amicis R. * [1] , Foppiani A. [1] , Leone A. [1] , Bedogni G. [1] , Ravella S. [1] , Mastella C. [2] , Baranello G. [3] , Masson R. [4] , Bertini E. S. [5] , D'Amico A. [5] , Pedemonte M. [6] , Bruno C. [6] , Agosto C. [7] , Giaquinto E. [8] , Bassano M. [8] , Battezzati A. [1] , Bertoli S. [9] | |
[1] International Center for the Assessment of Nutritional Status (ICANS), Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan ~ Milan ~ Italy, [2] SAPRE-UONPIA, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico ~ Milan ~ Italy, [3] The Dubowitz Neuromuscular Centre, UCL NIHR GOSH Biomedical Research Centre, Great Ormond Street Institute of Child Health ~ London ~ United Kingdom, [4] Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta ~ Milan ~ Italy, [5] Department of Neurosciences, Neuromuscular and Neurodegenerative Disorders Unit, Laboratory of Molecular Medicine, Bambino Gesu’ Children’s Research Hospital, IRCCS ~ Rome ~ Italy, [6] Italian Department of Neurosciences and Rehabilitation, Institute "G. Gaslini" ~ Genoa ~ Italy, [7] Department of Women’s and Children’s Health, University of Padua ~ Padua ~ Italy, [8] Dietetic and Nutrition Center, M. Bufalini Hospital ~ Cesena ~ Italy, [9] IRCCS Istituto Auxologico Italiano, Obesity Unit and Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases - Department of Food, Environmental and Nutritional Sciences, University of Milan ~ Milan ~ Italy |
05_Genetic neurological disorder\Polyneuropathies
P.05.31 | KNOCKDOWN AND REPLACEMENT OF MFN2 FOR TREATMENT OF DOMINANTLY INHERITED PERIPHERAL NEUROPATHY CMT2A PATIENTS |
Corti S. *, Rizzo F. , Nizzardo M. , Salani S. , Melzi V. , Taiana M. , Bresolin N. , Comi G. | |
Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy ~ Milan ~ Italy | |
P.05.32 | TTR-FAP ITALIAN REGISTRY: A COLLABORATIVE NETWORK FOR DEFINITION OF NATURAL HISTORY, PSYCHOSOCIAL BURDEN, STANDARDS OF CARE AND CLINICAL TRIALS |
Mazzeo A. * [1] , Vita G. [1] , Obici L. [2] , Merlini G. [2] , Rapezzi C. [3] , Magliano L. [4] , Sabatelli M. [5] , Grandis M. [6] , Fabrizi G. M. [7] , Pareyson D. [8] , Santoro L. [9] , Mauro A. [10] , Gentile L. [1] , Russo M. [1] | |
[1] Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina ~ Messina ~ Italy, [2] Amyloidosis Research and Treatment Centre, Fondazione IRCCS Policlinico San Matteo ~ Pavia ~ Italy, [3] Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum University of Bologna ~ Bologna ~ Italy, [4] Department of Psychology, University of Campania 'Luigi Vanvitelli' ~ Caserta ~ Italy, [5] Institute of Neurology-Catholic University of Sacro Cuore, Clinic Center NEMO- Fondazione Pol. A. Gemelli IRCCS ~ Rome ~ Italy, [6] Department of Neuroscience Rehabilitation Ophthalmology Genetics, Maternal and Child Health (DiNOGMI), University of Genova ~ Genova ~ Italy, [7] Neurology Division, Department of Neuroscience AOUI Verona ~ Verona ~ Italy, [8] Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta ~ Milan ~ Italy, [9] University of Naples 'Federico II' ~ Napoli ~ Italy, [10] Department of Neurosciences, University of Turin ~ Turin ~ Italy |
06_Genetic neurological disorder
P.06.33 | FINDING NEW TARGETS TO COUNTERACT BRAIN PROGENITOR CELLS DYSREGULATION IN AGC1 DEFICIENCY HYPOMYELINATION: A MULTIDISCIPLINARY APPROACH. |
Monti B. * [1] , Poeta E. [1] , Petralla S. [1] , Bentivoglia M. [1] , Virgili M. [1] , Tartagni O. [1] , Fiermonte G. [2] , Pisano I. [2] , Porcelli V. [2] , Giorgi F. [1] , Mercolini L. [1] , Pinton P. [3] , Hentschel J. [4] , Lasorsa F. M. [5] | |
[1] Dipartimento di Farmacia e Biotecnologie, Alma mater studiorum – Università degli studi di Bologna ~ Bologna ~ Italy, [2] Dipartimento Di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli studi di Bari “Aldo Moro” ~ Bari ~ Italy, [3] Dipartimento di Morfologia, chirurgia e medicina sperimentale, Università degli Studi di Ferrara ~ Ferrara ~ Italy, [4] Institut für Humangenetik, University of Leipzig ~ Leipzig ~ Germany, [5] Consiglio Nazionale delle Ricerche - CNR, Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM) ~ Bari ~ Italy | |
P.06.34 | THE AICARDI-GOUTIÈRES SYNDROME – FROM NUCLEIC ACID SENSING TO DISEASE MODELLING |
Kajaste-rudnitski A. * [1] , Giordano A. M. S. [1] , Luciani M. [1] , Migliara A. [1] , Cairati N. [2] , Giliani S. [3] , Fazzi E. [3] , Cereda C. [4] , Orcesi S. [4] , Naldini L. [1] , Lombardo A. [1] , Gritti A. [1] | |
[1] SR-TIGET ~ Milano ~ Italy, [2] The International Aicardi-Goutières Syndrome Association (I.A.G.S.A) ~ Lacchiarella ~ Italy, [3] University of Brescia ~ Brescia ~ Italy, [4] C. Mondino National Neurological Institute ~ Pavia ~ Italy | |
P.06.35 | IMPROVING DEVELOPMENTAL TRAJECTORIES IN 22Q11.2 DELETION SYNDROME BY OXYTOCIN: FOCUS ON ANTI-INFLAMMATORY EFFECTS. |
Papaleo F. * [1] , Ciampoli M. [1] , Castellani G. [1] , Ferretti V. [1] , Chini B. [2] | |
[1] Istituto Italiano di Tecnologia ~ Genova ~ Italy, [2] CNR ~ Milano ~ Italy | |
P.06.36 | ENHANCED THALAMOCORTICAL SYNAPTIC TRANSMISSION AND DYSREGULATION OF THE EXCITATORY-INHIBITORY BALANCE AT THE THALAMOCORTICAL FEED-FORWARD INHIBITORY MICROCIRCUIT IN A MOUSE MODEL OF FAMILIAL HEMIPLEGIC MIGRAINE |
Pietrobon D. * [1] , Tottene A. [1] , Favero M. [2] | |
[1] Dept of Biomedical Sciences ~ Padova ~ Italy, [2] Dept of Neuroscience ~ Verona ~ Italy | |
P.06.37 | A NOVEL COMPREHENSIVE STRATEGY FOR THE STUDY OF THE MOLECULAR BASIS OF FAMILIAL HEMIPLEGIC MIGRAINE 3 |
Gavazzo P. * [1] , Barbieri R. [1] , Bertelli S. [2] , Pusch M. [1] | |
[1] Biophysics Institute-CNR ~ Genova ~ Italy, [2] SISSA ~ Trieste ~ Italy | |
P.06.38 | ROLE OF ER-PHAGY IN HEREDITARY SENSORY AXONOPATHIES |
Grumati P. * | |
TIGEM ~ Pozzuoli ~ Italy | |
P.06.39 | TRPML1 LINKS LYSOSOMAL CALCIUM TO AUTOPHAGY INITIATION |
Medina D. L. *, Scotto Rosato A. | |
TIGEM ~ Pozzuoli ~ Italy |
07_Genetic neurological disorder\Ataxias
P.07.40 | EXCITATORY/INHIBITORY UNBALANCE IN ATAXIA TELANGIECTASIA AND NEW THERAPEUTHICAL INTERVENTIONS |
Focchi E. * [1] , Pizzamiglio L. [1] , Cambria C. [1] , Murru L. [2] , Passafaro M. [3] , Antonucci F. [3] | |
[1] Università degli studi di Milano ~ Milano ~ Italy, [2] Istituto di neuroscienze del CNR ~ Milano ~ Italy, [3] ~ Italy | |
P.07.41 | REGULATION OF ALTERNATIVE SPLICING OF VOLTAGE-GATED CA2+ CHANNELS BY CRISPR/CAS9-MEDIATED GENOME EDITING AS POTENTIAL GENETIC THERAPY FOR EPISODIC ATAXIA TYPE 2 |
Cingolani L. * [3] , Jaudon F. [1] , Fruscione F. [2] , Thalhammer A. [1] , Baldassari S. [2] , Zara F. [2] | |
[1] Istituto Italiano di Tecnologia ~ Genova ~ Italy, [2] Istituto Giannina Gaslini ~ Genova ~ Italy, [3] Università di Trieste ~ Trieste ~ Italy | |
P.07.42 | RNA THERAPEUTICS FOR FRIEDREICH’S ATAXIA |
Condò I. * [1] , Bon C. [2] , Luffarelli R. [1] , Russo R. [2] , Fortuni S. [1] , Pierattini B. [3] , Santulli C. [3] , Fimiani C. [2] , Persichetti F. [4] , Cotella D. [4] , Mallamaci A. [3] , Santoro C. [4] , Carninci P. [5] , Espinoza S. [2] , Testi R. [1] , Zucchelli S. [4] , Gustincich S. [2] | |
[1] University of Rome "Tor Vergata" ~ Roma ~ Italy, [2] Istituto Italiano di Tecnologia (IIT) ~ Genova ~ Italy, [3] International School for Advanced Studies (SISSA) ~ Trieste ~ Italy, [4] University of Piemonte Orientale ~ Novara ~ Italy, [5] RIKEN Center for Life Science Technologies ~ Yokohama ~ Japan | |
P.07.43 | CLINICAL, GENETIC AND FUNCTIONAL STUDIES ON JOUBERT SYNDROME AND RELATED DISORDERS: A MODEL TO UNDERSTAND THE COMPLEXITY OF CILIOPATHIES |
Bertini E. S. * [1] , Valente E. M. [2] , Consalez G. [3] , Filippo C. [3] , Croci L. [3] , Micalizzi A. [4] , Nuovo S. [5] , Ginevrino M. [5] , Romani M. [6] , Zanni G. [1] | |
[1] Laboratorio di Medicina Molecolare, IRCCS Ospedale Pediatrico Bambino Gesù, Roma ~ Rome ~ Italy, [2] Dept. of Molecular Medicine, University of Pavia, Pavia, 27100, Italy; ~ Pavia ~ Italy, [3] 2Divisione di Neuroscienze, IRCCS San Raffaele, Milano ~ Milano ~ Italy, [4] Unita’ di Genetica Medica, IRCCS Ospedale Pediatrico Bambino Gesù, Roma ~ Rome ~ Israel, [5] Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, 00143, Italy ~ Rome ~ Italy, [6] Molecular Genetics Laboratory, GENOMA Group, Rome, 00138, Italy ~ Rome ~ Italy |
08_Genetic neurological disorder\Epilepsy and Seizures
P.08.44 | DELINEATING THE MOLECULAR PATHWAY AND PATHOGENIC MECHANISM UNDERLYING AUTOSOMAL DOMINANT LATERAL TEMPORAL EPILEPSY (ADLTE) |
Nobile C. * [1] , Dazzo E. [1] , Baldassari S. [2] , Fruscione F. [2] , Sterlini B. [3] , Corradi A. [4] , Romei A. [4] , Benfenati F. [4] , Zara F. [2] | |
[1] CNR-Neuroscience Institute ~ Padova ~ Italy, [2] Institute G. Gaslini ~ Genova ~ Italy, [3] University of Genoa ~ Genova ~ Italy, [4] Istituto Italiano di Tecnologia ~ Genova ~ Italy | |
P.08.45 | PROTEIN SUBSTITUTION THERAPY: A PROMISING TREATMENT FOR CDKL5 DEFICIENCY DISORDER |
Medici G. * [1] , Trazzi S. [1] , De Franceschi M. [1] , Fuchs C. [1] , Loi M. [1] , Gennaccaro L. [1] , Galvani G. [1] , Tassinari M. [1] , Giustetto M. [2] , Kilstrup-nielsen C. [3] , Pizzorusso T. [4] , Ciani E. [1] , Ren E. [1] | |
[1] 1- Department of Biomedical and Neuromotor Sciences, University of Bologna ~ Bologna ~ Italy, [2] 2- Department of Neuroscience, University of Turin ~ Turin ~ Italy, [3] 3- Department of Biotechnology and Life Sciences, University of Insubria ~ Busto Arsizio ~ Italy, [4] 4- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence ~ Florence ~ Italy | |
P.08.46 | TOWARD GENE THERAPY FOR DRAVET SYNDROME: UNCOVERING DYNAMICS OF REVERSIBILITY AND MECHANISMS OF SCN1A GENE MODULATION |
Colasante G. * [1] , Valassina N. [2] , Brusco S. [2] , Indrigo M. [2] , Broccoli V. [2] | |
[1] Ospedale San Raffaele ~ Coordinator ~ Italy, [2] Ospedale San Raffaele ~ Milan ~ Italy | |
P.08.47 | RESCUING EPILEPSY ASSOCIATED WITH SYN1 AND SCN1A GENE MUTATIONS BY INHIBITING EEF2K/EEF2 PATHWAY |
Beretta S. * [1] , Gritti L. [1] , Ponzoni L. [2] , Scalmani P. [3] , Mantegazza M. [4] , Sala M. [1] , Verpelli C. [1] , Sala C. [1] | |
[1] CNR Neuroscience Institute, Milano ~ Milano ~ Italy, [2] Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano ~ Milano ~ Italy, [3] U.O. of Neurophysiopathology and Diagnostic Epileptology, Foundation Istituto di Ricerca e Cura a Carattere Scientifico Neurological Institute Carlo Besta ~ Milano ~ Italy, [4] Institute of Molecular and Cellular Pharmacology, CNRS UMR7275 and University of Nice-Sophia Antipolis ~ Valbonne ~ France | |
P.08.48 | SOLVING THE PUZZLE OF PROTOCADHERIN-19 MOSAICISM TO UNDERSTAND THE PATHOPHYSIOLOGY OF PCDH19 FEMALE EPILEPSY (PCDH19-FE) |
Bassani S. * [3] , Mazzoleni S. [1] , Lamers D. [2] , Murru L. [3] , Passafaro M. [3] , Ratto G. M. [2] | |
[1] CNR, Institute of Neuroscience and Biometra Dept., University of Milan ~ Milano ~ Italy, [2] NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR ~ Pisa ~ Italy, [3] CNR, Institute of Neuroscience ~ Milano ~ Italy | |
P.08.49 | DISSECTING THE ARISTALESS-RELATED HOMEOBOX EPILEPSY PATH TO FIND DRUGGABLE TARGET MOLECULES |
Miano M. G. * [1] , Poeta L. [1] , Verrillo L. [1] , Drongitis D. [1] , Tuccillo M. [1] , Filosa S. [3] , Zucchelli S. [2] , Collombat P. [4] , Gecz J. [5] , Gustincich S. [6] , Acampora D. [1] , Di Schiavi E. [3] , Altucci L. [7] | |
[1] Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, Naples, Italy ~ Naples ~ Italy, [2] Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, Novara, Italy ~ Novara ~ Italy, [3] Institute of Biosciences and BioResources, CNR, Naples, Italy ~ Naples ~ Italy, [4] Université Côte d’Azur, CNRS, Inserm, iBV, Nice, France ~ Nice ~ France, [5] Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia ~ Adelaide ~ Australia, [6] Italian Institute of Technology – IIT, Genova, Italy ~ Genova ~ Italy, [7] University of Campania Luigi Vanvitelli, Caserta, Italy ~ Caserta ~ Italy | |
P.08.50 | GENOTYPE-PHENOTYPE CORRELATIONS, NOVEL PATHOGENETIC MECHANISMS, AND PILOT CLINICAL STUDIES IN NEONATAL EPILEPSIES ASSOCIATED TO MUTATIONS IN THE KCNQ2/3 POTASSIUM CHANNEL GENES |
Taglialatela M. * [1] , Miceli F. [1] , Soldovieri M. V. [2] , Ambrosino P. [3] , Lauritano A. [1] , Nappi P. [1] , Longobardi E. [1] , Mosca I. [2] | |
[1] Dept. of Neuroscience, University Federico II ~ Naples ~ Italy, [2] Dept. of Medicine, University of Molise ~ Campobasso ~ Italy, [3] Dept. of Science and Technology ~ Benevento ~ Italy | |
P.08.51 | INTERACTION OF PRRT2 WITH SODIUM CHANNELS: PATHOGENETIC BASIS AND NEW TARGETS FOR THE CURE OF PRRT2-ASSOCIATED PAROXYSMAL DISORDERS |
Corradi A. * [2] , Romei A. [1] , Sterlini B. [2] , Michetti C. [1] , Fruscione F. [3] , Grasselli G. [1] , Valente P. [2] , Fassio A. [2] , Baldelli P. [2] , Maragliano L. [1] , Benfenati F. [2] | |
[1] Istituto Italiano di Tecnologia ~ Genova ~ Italy, [2] DIMES, University of Genova ~ Genova ~ Italy, [3] DINOGMI, University of Genova ~ Genova ~ Italy |
09_Genetic neurological disorder\Intellectual Disabilities
P.09.52 | NLG3 SHAPES EXCITATION/INHIBITION RATIO IN NEURONAL CIRCUITS OF ASD MURINE MODELS: IMPLICATIONS OF THE CA2 HIPPOCAMPAL CIRCUIT IN SOCIAL DEFICITS |
Barberis A. * [2] , Griguoli M. [1] , Petrini E. [2] , Modi B. [1] , Pimpinella D. [1] , Pazienti A. [1] , Cherubini E. [1] | |
[1] EBRI ~ Rome ~ Italy, [2] Italian Institute of Technology ~ Genova ~ Italy | |
P.09.53 | ROLE OF INTRACELLULAR CHLORIDE ACCUMULATION IN DOWN SYNDROME PHYSIOPATHOLOGY IN MICE RUOLO DELLA ACCUMULAZIONE DI CLORO INTRACELLULARE NELLA FISIOPATOLOGIA DELLA SINDROME DI DOWN. |
Savardi A. * [1] , Alberti M. [1] , Ziogas I. [1] , Bolla M. [1] , Parrini M. [1] , Narducci R. [1] , Colombi I. [1] , Portioli C. [1] , Ronzitti G. [2] , Mingozzi F. [2] , Borgogno M. [3] , La Sala G. [3] , Ortega Martínez J. A. [3] , De Vivo M. [3] , Contestabile A. [1] , Cancedda L. [1] | |
[1] Istituto Italiano di Tecnologia (IIT), Brain Development and Disease Laboratory ~ Genova ~ Italy, [2] Genethon ~ Evry ~ France, [3] Istituto Italiano di Tecnologia (IIT), Molecular Modeling & Drug Discovery Laboratory ~ Genova ~ Italy | |
P.09.54 | NEUROTROPHIC-MIMETIC STRATEGY TO RESCUE SYNAPTIC PLASTICITY AND COGNITIVE FUNCTIONS IN A MOUSE MODEL OF DOWN SYNDROME |
Contestabile A. * [1] , Parrini M. [1] , Alberti M. [1] , Colombi I. [1] , Ghezzi D. [2] , Deidda G. [1] , Cancedda L. [1] | |
[1] Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia ~ Genova ~ Italy, [2] Medtronic Chair in Neuroengineering, EPFL ~ Lausanne ~ Switzerland | |
P.09.55 | DROSOPHILA MELANOGASTER AS A MODEL TO STUDY THE ROLE OF FMRP PROTEIN, INVOLVED IN THE FRAGILE-X SYNDROME, IN THE PIRNA-MEDIATED GENOME STABILITY |
Bozzetti M. G. * [1] , Specchia V. [1] , D'Attis S. [1] , Puricella A. [1] , Cattenoz P. [2] , Giangrande A. [2] | |
[1] DiSteBA - University of Salento ~ Lecce ~ Italy, [2] IGBMC - Illkirch ~ Strasbourg ~ France | |
P.09.56 | SETD5 REGULATES CHROMATIN METHYLATION STATE AND PRESERVES GLOBAL TRANSCRIPTIONAL FIDELITY DURING BRAIN DEVELOPMENT AND NEURONAL WIRING |
Sessa A. * [1] , Fagnocchi L. [2] , Mastrototaro G. [1] , Massimino L. [1] , Mattia Z. [1] , Indrigo M. [1] , Cattaneo S. [1] , Martini D. [3] , Gabellini C. [3] , Pucci C. [3] , Fasciani A. [2] , Belli R. [2] , Taverna S. [1] , Andreazzoli M. [3] , Alessio Z. [2] , Broccoli V. [1] | |
[1] Ospedale San Raffaele ~ Milano ~ Italy, [2] University of Trento ~ Trento ~ Italy, [3] Università di Pisa ~ Pisa ~ Italy | |
P.09.57 | INTRACELLULAR CHLORIDE DYNAMICS IN AUTISTIC BRAIN: A BETTER UNDERSTANDING IS NEEDED FOR TAILORED CURES. |
Lodovichi C. * [1] , Lamers D. [2] , Maset A. [1] , Ratto G. M. [2] | |
[1] Istituto di Neuroscienze del CNR ~ Padova ~ Italy, [2] Istituto Nanoscienze CNR e Scuola Normale Superiore ~ Pisa ~ Italy | |
P.09.58 | NEURONAL DYSFUNCTIONS UNDERLYING PHELAN−MCDERMID SYNDROME AND THEIRS RESCUE BY GENETIC AND PHARMACOLOGICAL MODULATION OF MGLU5 SIGNALING |
Vinci E. * [1] , Giona F. [1] , Ponzoni L. [1] , Tozzi A. [2] , Sala M. [1] , Jones C. [3] , Boeckers T. [4] , Verpelli C. [1] | |
[1] CNR Neuroscience Institute ~ Milano ~ Italy, [2] University of Perugia ~ Perugia ~ Italy, [3] Vanderbilt Center for Neuroscience Drug Discovery ~ Vanderbilt ~ United States of America, [4] Institute for Anatomy and Cell Biology, Ulm University ~ Ulm ~ Germany | |
P.09.59 | EXPLOITING WHOLE-BRAIN STRATEGIES OF GENE THERAPY AND NOVEL THERAPEUTIC TARGETS IN RETT SYNDROME MOUSE MODELS |
Broccoli V. * [1] , Luoni M. [1] , Giannelli S. [1] , Indrigo M. [1] , Massimino L. [1] , Gregori S. [2] | |
[1] Ospedale San Raffaele ~ Milano ~ Italy, [2] Telethon Institute for Gene Therapy (TIGET) ~ Milano ~ Italy | |
P.09.60 | ALTERED L-TYPE CHANNEL GATING, ACTION POTENTIAL FIRING AND EXCITATORY/INHIBITORY SYNAPTIC RESPONSES IN HIPPOCAMPAL NEURONS OF THE AUTISTIC TIMOTHY SYNDROME TYPE-2 MOUSE |
Carbone E. * [1] , Calorio C. [1] , Hidisoglu E. [2] , Chiantia G. [1] , Gavello D. [1] , Salio C. [1] , Sassoè-pognetto M. [1] , Defilippi P. [1] , Balzac F. [1] , Turco E. [1] , Bett G. C. L. [3] , Rasmusson R. L. [3] , Marcantoni A. [1] | |
[1] University of Torino ~ Torino ~ Italy, [2] Akdeniz Üniversitesi ~ ANTALYA ~ Turkey, [3] Dept. of Physiol. & Biophysics, The State Univ. of New York ~ Buffalo NY ~ United States of America | |
P.09.61 | MECHANISTIC DISSECTION OF POLYCOMB-DEPENDENT DYSREGULATION IN WEAVER SYNDROME NEURAL LINEAGES |
López Tobón A. * [1] , Trattaro S. [1] , Vitriolo A. [1] , Gibson W. T. [3] , Weksberg R. [2] , Testa G. [1] | |
[1] Istituto Europeo di Oncologia ~ Milan ~ Italy, [2] The hospital for sick children ~ Toronto ~ Canada, [3] BC Childrens hospital research institute ~ British Columbia ~ Canada | |
P.09.62 | SPOTLIGHT ON LATERAL HABENULA (LHB) FUNCTION IN TETRASPANIN7 (TSPAN7) KNOCK-OUT MICE |
Murru L. * [1] , Ponzoni L. [2] , Longatti A. [1] , Sala M. [3] , Passafaro M. [3] | |
[1] CNR Institute of Neuroscience ~ Milano ~ Italy, [2] Fondazione Zardi Gori ~ Milano ~ Italy, [3] ~ Italy |
10_Genetic neurological disorder\Neurodegenerative diseases
P.10.63 | ALTERATION OF LYSOSOMES AND OF LYSOSOMAL ACTIVITY IN CHARCOT-MARIE-TOOTH 2B PERIPHERAL NEUROPATHY |
Bucci C. * [1] , Romano R. [1] , Rivellini C. [2] , De Luca M. [1] , Tonlorenzi R. [2] , Beli R. [1] , Manganelli F. [3] , Nolano M. [4] , Santoro L. [3] , Eskelinen E. [5] , Previtali S. C. [2] | |
[1] University of Salento ~ Lecce ~ Italy, [2] San Raffaele Scientific Institute ~ Milan ~ Italy, [3] University of Naples "Federico II" ~ Naples ~ Italy, [4] Salvatore Maugeri Foundation ~ Benevento ~ Italy, [5] University of Turku ~ Turku ~ Finland | |
P.10.64 | FULL ATOMISTIC MODEL OF PRION STRUCTURE AND CONVERSION |
Biasini E. * | |
Dulbecco Telethon Institute & Dip. CIBIO, University of Trento ~ Trento ~ Italy | |
P.10.65 | MITOCHONDRIAL CA2+ UPTAKE IN THE PATHOGENESIS OF FAMILIAL ALZHEIMER’S DISEASE |
Rizzuto R. * [1] , D'Orsi B. [1] , Galla L. [1] , Greotti E. [2] , Beamer E. [3] , Alves M. [3] , Engel T. [3] , Pizzo P. [1] , De Stefani D. [1] , Tullio P. [2] | |
[1] Department of Biomedical Sciences, University of Padova ~ Padova ~ Italy, [2] Neuroscience Institute - Italian National Research Council (CNR) ~ Padova ~ Italy, [3] 3Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland ~ Dublin ~ Ireland | |
P.10.66 | DEVELOPMENT OF EXON SPECIFIC U1 SNRNA-BASED THERAPY FOR FAMILIAL DYSAUTONOMIA |
Pagani F. *, Riccardi F. , Romano G. , Bussani E. , Vicidomini A. , Peretto L. | |
ICGEB ~ Trieste ~ Italy | |
P.10.67 | FATAL FAMILIAL INSOMNIA: PREVENTIVE TREATMENT WITH DOXYCYCLINE OF AT RISK INDIVIDUALS |
Forloni G. * [1] , Tettamanti M. [1] , Lucca U. [1] , Chiesa R. [1] , Albanese Y. [1] , Redaelli V. [2] , Tagliavini F. [2] , Artuso V. [3] , Roiter I. [3] | |
[1] Department of Neuroscience IRCCS, Istituto di Ricerche Farmacologiche “Mario Negri” ~ Milan ~ Italy, [2] Fondazione IRCCS - Istituto Neurologico "Carlo Besta" ~ Milano ~ Italy, [3] Dept. of Internal Medicine, Medicine Operative Unit Oderzo ASL 9 ~ Treviso ~ Italy | |
P.10.68 | NEUROSERPIN MISFOLDING AND FENIB NEURODEGENERATION: MECHANISM AND INHIBITION PROCESSES |
Visentin C. * [1] , Broggini L. [1] , Russo R. [2] , Bonato F. [3] , Passarella D. [3] , Dallavalle S. [4] , Manno M. [5] , Bolognesi M. [1] , Ricagno S. [1] | |
[1] Dipartimento di Bioscienze, Università degli Studi di Milano ~ Milano ~ Italy, [2] Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano ~ Milano ~ Italy, [3] Dipartimento di Chimica, Università degli Studi di Milano ~ Milano ~ Italy, [4] Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, università degli Studi di Milano ~ Milano ~ Italy, [5] Istituto di Biofisica, Consiglio Nazionale delle Ricerche ~ Palermo ~ Italy | |
P.10.69 | LYSOSOMAL STORAGE DISORDERS (LSD) - MODELING THE DISEASE COMPLEXITY TO REFINE GENE/CELL THERAPY TREATMENT STRATEGIES |
Ricca A. * [1] , Ornaghi F. [1] , Mangiameli E. [1] , Luciani M. [1] , Cascino F. [1] , Sala D. [1] , Tiradani L. [1] , Cecchele A. [1] , Morena F. [2] , Martino S. [2] , Gritti A. [1] | |
[1] 1. San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) ~ Milano ~ Italy, [2] University of Perugia ~ Perugia ~ Italy | |
P.10.70 | MENINGES AS AN OVERLOOKED PHARMACOLOGICAL TARGET FOR GLOBOID CELL LEUKODYSTROPHY |
Bifari F. * [3] , Mattioli M. [3] , Riva M. [1] , Gritti A. [2] | |
[1] Unit of Oncological Neurosurgery Humanitas Research Hospital; Department of Medical Biotechnology and Translational Medicine, University of Milan ~ Milan ~ Italy, [2] Gene/neural stem cell therapy for lysosomal storage diseases San Raffaele Telethon Institute for Gene Therapy ~ Milan ~ Italy, [3] Laboratory of Cell Metabolism and Regenerative Medicine; Department of Medical Biotechnology and Translational Medicine; University of Milan ~ Milan ~ Italy | |
P.10.71 | PLASMALOGEN-BASED THERAPEUTIC STRATEGY FOR THE TREATMENT OF HEREDITARY SPASTIC PARAPLEGIA |
Pendin D. * [4] , Mattarei A. [1] , Daga A. [3] , Vedovelli L. [2] | |
[1] Dept of Pharmaceutical and Pharmacological Sciences ~ Padova ~ Italy, [2] Department of Cardiac, Thoracic and Vascular Sciences ~ Padova ~ Italy, [3] Scientific Institute IRCCS E. Medea ~ Padova ~ Italy, [4] Neuroscience Institute - CNR ~ Padova ~ Italy | |
P.10.72 | SLUGGISH MITOCHONDRIAL FLICKERING AT THE BASIS OF HEREDITARY SPASTIC PARAPLEGIA (SPG7) |
Casari G. * [1] , Sambri I. [1] , Massa F. [1] , Gullo F. [2] , Meneghini S. [2] , Cassina L. [3] , Patanella L. [1] , Santorelli F. [4] , Codazzi F. [5] , Grohovaz F. [5] , Bernardi P. [6] , Becchetti A. [2] | |
[1] Telethon Institute of Genetica and Medicine ~ Naples ~ Italy, [2] University of Milano-Bicocca ~ Milan ~ Italy, [3] Ospedale San Raffaele ~ Milan ~ Italy, [4] Fondazione Stella Maris ~ Pisa ~ Italy, [5] Università Vita-Salute San Raffaele ~ Milan ~ Italy, [6] University of Padova ~ Padova ~ Italy | |
P.10.73 | TARGETING NEURONS WITH CHOLESTEROL. HOW CAN IT CHANGE THE FUTURE OF HD PATIENTS |
Cattaneo E. * [1] , Valenza M. [1] , Birolini G. [1] , Tosi G. [2] , Pederzoli F. [2] , Ruozi B. [2] , Passoni A. [3] , Bagnati R. [3] , Salmona M. [4] | |
[1] Department of Biosciences and Centre for Stem Cell Research, University of Milan, Milan, Italy and Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan (Italy) ~ Milano ~ Italy, [2] Nanomedicine and Pharmaceutical technology, Department of Life Sciences, University of Modena and Reggio Emilia, Modena (Italy) ~ Modena ~ Italy, [3] Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, Milan (Italy) ~ Milan ~ Italy, [4] Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, Milan ~ Milano ~ Italy | |
P.10.74 | DISSECTING THE MOLECULAR FUNCTION OF MUTANT HUNTINGTIN WITH STEM CELLS |
Martello G. * [1] , Ferlazzo G. [1] , Angiolillo S. [1] , Carbognin E. [1] , Moro E. [1] , Leeb M. [2] , Maglione V. [3] | |
[1] Department of Molecular Medicine, University of Padua ~ Padova ~ Italy, [2] Max F. Perutz Laboratories, Vienna Biocenter ~ Vienna ~ Austria, [3] IRCCS, Neuromed ~ Pozzilli ~ Italy | |
P.10.75 | MIR-181A AND MIR-181B DOWNREGULATION AMELIORATES MITOCHONDRIAL-ASSOCIATED NEURODEGENERATION BY ENHANCING MITOCHONDRIAL BIOGENESIS AND MITOPHAGY |
Franco B. * [1] , Indrieri A. [1] , Carrella S. [1] , Spaziano A. [1] , Romano A. [1] , Fernandez-vizarra E. [2] , Barbato S. [1] , Zeviani M. [2] , Surace E. M. [3] , De Leonibus E. [1] , Banfi S. [1] | |
[1] Telethon Institute of Genetics and Medicine ~ Pozzuoli ~ Italy, [2] MRC Mitochondrial Biology Unit, University of Cambridge ~ Cambridge ~ United Kingdom, [3] Department of Translational Medical Science, University of Naples “Federico II ~ Napoli ~ Italy | |
P.10.76 | DISEASE' MECHANISMS AND PHARMACOLOGICAL TARGETING OF BEHAVIORAL SYMPTOMS IN SANFILIPPO SYNDROME. |
De Leonibus E. * [4] , De Risi M. [1] , Tufano M. [1] , Alvino F. [1] , Ferraro M. G. [1] , Pulcrano S. [2] , Bellenchi G. [2] , Marrocco E. [1] , Sorrentino C. [1] , Caiazzo M. [3] , Fraldi A. [1] | |
[1] Telethon Institute of Genetics and Medicine ~ Pozzuoli ~ Italy, [2] CNR - IGB "Adriano Buzzati Traverso" ~ Naples ~ Italy, [3] Utrecht Institute for Pharmaceutical Sciences (UIPS) ~ Utrecht ~ Netherlands, [4] ~ Italy | |
P.10.77 | LYSOSOMAL AMYLOID DEPOSITION IMPAIRS AUTOPHAGY AND IS A DRUGGABLE TARGET FOR THE NEURODEGENERATION IN LYSOSOMAL STORAGE DISEASES |
Monaco A. * [1] , Maffia V. [1] , Sorrentino C. [1] , Sambri I. [1] , Ezhova Y. [1] , Giuliano T. [1] , Cacace V. [1] , Nusco E. [1] , De Risi M. [1] , De Leonibus E. [1] , Schrader T. [2] , Klarner F. [2] , Bitan G. [3] , Fraldi A. [1] | |
[1] TIGEM ~ Pozzuoli ~ Italy, [2] University of Duisburg-Essen ~ Essen ~ Germany, [3] University Of California, David Geffen School of Medicine ~ Los Angeles ~ United States of America | |
P.10.78 | TARGETING LIPIDS IN CLN8-ASSOCIATED NCL DISEASES: STRUCTURAL AND FUNCTIONAL INTERACTION OF CLN8 WITH VESICLE-ASSOCIATED MEMBRANE PROTEIN-ASSOCIATED PROTEIN A (VAPA), AND GENOTYPE-PHENOTYPE CORRELATIONS |
Guarneri P. * [1] , Papasergi S. [1] , Saladino P. [1] , Tinnirello R. [2] , Cernigliaro C. [1] , Prioni S. [3] , Grassi S. [3] , Mauri L. [3] , Giussani P. C. [3] , Prinetti A. [3] | |
[1] Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Department of Biomedical Sciences, CNR ~ Palermo ~ Italy, [2] Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Department of Biomedical Sciences, CNR ~ Italy, [3] Department of Medical Biotechnology and Translational Medicine, School of Medicine, University of Milan, Milan, Italy ~ Milano ~ Italy | |
P.10.79 | AGE-DEPENDENT BEHAVIORAL DEFICITS AND PROTEIN AGGREGATION IN LRRK2 HG2019S MICE |
Piccoli G. * | |
CIBIO- University of Trento ~ Trento ~ Italy | |
P.10.80 | IMPLEMENTATION OF HUMAN NEURONAL CULTURES AND MOUSE MODELS OF PANTOTHENATE KINASE 2 DEFICIENCY TO INVESTIGATE PATHOGENIC MECHANISMS OF IRON-RELATED NEURODEGENERATION AND EVALUATE COENZYME A THERAPEUTIC EFFICACY |
Levi S. * [4] , Santambrogio P. S. [1] , Di Meo I. [2] , Rubio A. [1] , Cavestro C. [2] , Ripamonti M. [1] , Carecchio M. [3] , Broccoli V. [1] , Taverna S. [1] , Tiranti V. [2] | |
[1] San Raffaele Scientific Institute ~ Milano ~ Italy, [2] IRCCS-Istituto C. Besta ~ Milano ~ Italy, [3] ~ Milano ~ Italy, [4] Vita-Salute San Raffaele University ~ MIlano ~ Italy | |
P.10.81 | A NEW EXPLOITATION OF A PORPHYRIN WITH ANTI-PRION PROPERTIES: CHARACTERIZATION OF THE MECHANISM OF ACTION AND PRECLINICAL STUDIES IN MOUSE MODELS OF GENETIC PRION DISEASE |
Zucchelli C. * [6] , Masone A. [5] , Caruso E. [1] , Restelli E. [5] , Comerio L. [5] , Vanni I. [2] , Tapella L. [5] , Lucchetti J. [5] , Duskey J. T. [4] , Cagnotto A. [5] , Cecatiello V. [7] , Di Bari M. [2] , Tosi G. [4] , Pasqualato S. [7] , Salmona M. [5] , Nonno R. [2] , Requena J. [3] , Gobbi M. [5] , Banfi S. [1] , Musco G. [6] , Chiesa R. [5] | |
[1] Univerità degli Studi dell'Insubria ~ Varese ~ Italy, [2] Istituto Superiore di Sanità ~ Rome ~ Italy, [3] University of Santiago de Compostela ~ Santiago de Compostela ~ Spain, [4] Università degli Studi di Modena e Reggio Emilia ~ Modena ~ Italy, [5] Istituto di Ricerche Farmacologiche Mario Negri IRCCS ~ Milan ~ Italy, [6] IRCCS Ospedale San Raffaele ~ Milan ~ Italy, [7] Istituto Europeo di Oncologia IRCCS ~ Milan ~ Italy | |
P.10.82 | ALTERNATIVE TRANSLATION INITIATION AS A NOVEL STRATEGY TO BLOCK TOXICITY OF THE MUTANT ANDROGEN RECEPTOR IN SBMA |
Cristofani R. * [1] , Rusmini P. [1] , Galbiati M. [1] , Crippa V. [1] , Chierichetti M. [1] , Ferrari V. [1] , Tedesco B. [1] , Casarotto E. [1] , Pennuto M. [2] , Poletti A. [1] | |
[1] Università degli Studi di Milano ~ Milano ~ Italy, [2] Università degli Studi di Padova ~ Padova ~ Italy | |
P.10.83 | MOTOR NEURON DEGENERATION IN SPINAL AND BULBAR MUSCULAR ATROPHY: MOLECULAR APPROACHES TO COUNTERACT MUTANT ANDROGEN RECEPTOR NEUROTOXICITY |
Galbiati M. * [1] , Cristofani R. [1] , Cicardi M. E. [1] , Meroni M. [1] , Crippa V. [1] , Ferrari V. [1] , Tedesco B. [1] , Chierichetti M. [1] , Casarotto E. [1] , Messi E. [1] , Piccolella M. [1] , Pennuto M. [2] , Cescon M. [2] , Bonaldo P. [2] , Boido M. M. [3] , Vercelli A. [3] , Rusmini P. [1] , Poletti A. [1] | |
[1] Università degli Studi di Milano ~ Milano ~ Italy, [2] Università degli Studi di Padova ~ Padova ~ Italy, [3] Università degli Studi di Torino ~ Torino ~ Italy | |
P.10.84 | TRANSLATING MOLECULAR PATHOLOGY INTO A THERAPEUTIC STRATEGY IN SCA38, A NEWLY IDENTIFIED FORM OF SPINOCEREBELLAR ATAXIA. |
Brusco A. * [1] , Di Gregorio E. [1] , Manes M. [2] , Hoxha E. [3] , Ferrero M. [1] , Tripathy D. [4] , Di Campli A. [5] , Pavinato L. [1] , Costanzi C. [2] , Giorgio E. [1] , Pozzi E. [1] , Mitro N. [6] , Basso M. [4] , Sallese M. [7] , Caruso D. [6] , Tempia F. [3] , Borroni B. [2] | |
[1] University of Torino, Dept. Medical Sciences ~ Torino ~ Italy, [2] University of Brescia, Dept. of Clinical and Experimental Sciences, ~ Brescia ~ Italy, [3] Neuroscience Institute Cavalieri Ottolenghi ~ Orbassano (TO) ~ Italy, [4] University of Trento, Centre for Integrative Biology ~ Trento ~ Italy, [5] Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR) ~ Napoli ~ Italy, [6] University of Milan, Dept. of Pharmacological and Biomolecular Sciences, ~ Milano ~ Italy, [7] University 'G. d'Annunzio, Dept. of Medical, Oral and Biotechnological Sciences, ~ Chieti ~ Italy |
11_Inborn errors of metabolism
P.11.85 | OXIDATIVE LIPIDOMICS IN BARTH SYNDROME |
Corcelli A. *, Lobasso S. , Lopalco P. | |
UNIVERSITY OF BARI ALDO MORO ~ BARI ~ Italy | |
P.11.86 | CREATINE DEFICIENCY SYNDROME: NOVEL INSIGHT INTO BRAIN FUNCTION AND THERAPEUTIC STRATEGIES |
Baroncelli L. * [1] , Gozzi A. [2] | |
[1] IRCCS Fondazione Stella Maris ~ Calambrone (PI) ~ Italy, [2] Fondazione Istituto Italiano di Tecnologia (IIT) ~ Rovereto ~ Italy | |
P.11.87 | CIRCULATING ANTI-GB3 ANTIBODY AS BIOMARKER OF MYOCARDIAL INFLAMMATION IN PATIENTS WITH FABRY DISEASE CARDIOMYOPATHY |
Chimenti C. *, Verardo R. , Grande C. , Frustaci A. | |
INMI L Spallanzani ~ Rome ~ Italy | |
P.11.88 | METABOLIC REPROGRAMMING OF T REGULATORY CELLS AS THERAPEUTIC TOOL TO DAMPEN THE IMMUNO-INFLAMMATORY RESPONSE ASSOCIATED TO ATHEROSCLEROSIS IN PATIENTS AFFECTED BY FAMILIAL HYPERCHOLESTEROLAEMIA |
Bonacina F. * [2] , Martini E. [1] , Cremonesi M. [1] , Kallikourdis M. [1] , Norata G. D. [2] | |
[1] IRCCS Humanitas Research Foundation ~ Rozzano ~ Italy, [2] Department of Excellence of Pharmacological and Biomolecular sciences, University of Milan ~ Milan ~ Italy | |
P.11.89 | EXPLOITING TARGETED EPIGENOME EDITING FOR THERAPEUTIC APPLICATIONS AND TO UNCOVER NOVEL GENE REPRESSION MECHANISMS. |
Lombardo A. * [2] , Migliara A. [1] , Del Borrello R. [1] , Cappelluti M. A. [2] , Caserta I. [2] , Baccega T. [2] , Reschigna A. [2] , Capasso P. [2] | |
[1] San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute ~ Milan ~ Italy, [2] San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, and Vita-Salute San Raffale University ~ Milan ~ Italy | |
P.11.90 | INCREASED AUTOIMMUNITY RISK IN GLYCOGEN STORAGE DISEASE TYPE 1B IS ASSOCIATED WITH ALTERATION OF REGULATORY T CELLS |
Carbone F. * [1] , Micillo T. [3] , Colamatteo A. [4] , Melis D. [6] , Assunto A. [2] , Perna F. [5] , Rossi A. [6] , Rosano C. [6] , Strisciuglio P. [6] , Parenti G. [6] , Matarese G. [4] | |
[1] Istituto per l'Endocrinologia e l'Oncologia Sperimentale-Consiglio Nazionale delle Ricerche (IEOS-CNR) ~ Napoli ~ Italy, [2] Dipartimento di Medicina Molecolare e Biotecnologie Mediche e Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II ~ Napoli ~ Italy, [3] Dipartimento di Biologia, Università degli Studi di Napoli Federico II ~ Napoli ~ Italy, [4] Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II ~ Napoli ~ Italy, [5] Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II ~ napoli ~ Italy, [6] Dipartimento di Scienze Mediche Traslazionali - Università degli Studi di Napoli Federico II ~ Napoli ~ Italy | |
P.11.91 | EXPLOITING A BACTERIAL REDOX CYCLER AGAINST MITOCHONDRIAL DISEASE LINKED TO RESPIRATORY COMPLEX III DYSFUNCTION |
Szabo I. * [1] , Peruzzo R. [1] , Corrà S. [1] , Costa R. [1] , Brischigliaro M. [1] , Leanza L. [1] , Zeviani M. [2] , De Pittà C. [1] , Costa R. [1] | |
[1] University of Padova ~ Padova ~ Italy, [2] University of Cambridge ~ Cambridge ~ United Kingdom | |
P.11.92 | NOVEL THERAPEUTIC APPROACHES FOR COENZYME Q DEFICIENCY |
Salviati L. * [1] , Trevisson E. [1] , Acosta M. [1] , Calderan C. [1] , Baschiera E. [1] , Cerqua C. [1] , Pierrel F. [2] , Bernardi P. [4] , Navas P. [3] | |
[1] Department of Women and Children's health ~ Padova ~ Italy, [2] University Grenoble Alpes ~ Grenoble ~ France, [3] Universidad Pablo de Olavide ~ Sevilla ~ Spain, [4] Dept. of Biomedical Sciences University of Padova ~ Padova ~ Italy | |
P.11.93 | HEMATOPOIETIC STEM CELL GENE THERAPY FOR MUCOPOLYSACCHARIDOSIS TYPE I, HURLER VARIANT (MPS-IH). |
Bernardo M. E. * [1] , Gentner B. [1] , Tucci F. [1] , Fumagalli F. [1] , Ciotti F. [1] , Sarzana M. [1] , Pontesilli S. [2] , Baldoli C. [2] , Filisetti C. [2] , Miglietta S. [1] , Acquati S. [1] , Redaelli D. [1] , Zonari E. [1] , Rovelli A. [3] , Parini R. [3] , La Marca G. [4] , Naldini L. [1] , Aiuti A. [1] | |
[1] SR-Tiget ~ Milano ~ Italy, [2] Ospedale San Raffaele ~ Milano ~ Italy, [3] Ospedale San Gerardo ~ Monza ~ Italy, [4] Ospedale Meyer ~ Firenze ~ Italy | |
P.11.94 | IN VIVO INDUCTION OF AG-SPECIFIC TOLERANCE BY HEPATOCYTE-TARGETED GENE TRANSFER. |
Annoni A. *, Squeri G. , Russo F. , Curto R. , Sala L. , Cesana L. , Naldini L. , Gregori S. | |
San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute ~ Milan ~ Italy | |
P.11.95 | POMPE DISEASE, NEW APPROACHES TO ADDRESS UNMET NEEDS |
Parenti G. * [1] , Tarallo A. [1] , Damiano C. [1] , Minopoli N. [1] , Strollo S. [1] , Gragnaniello V. [2] , Fecarotta S. [2] , Gatto F. [1] | |
[1] Telethon Institute of Genetics and Medicine ~ Pozzuoli ~ Italy, [2] Department of Translational Medical Sciences, Federico II University ~ Napoli ~ Italy | |
P.11.96 | NOVEL THERAPIES FOR UREA CYCLE DISORDERS. |
Brunetti-pierri N. * [1] , Soria L. [1] , De Angelis A. [1] , Paris P. [2] , Cuomo P. [2] , Motta A. [2] , Perocheau D. [3] , Orford M. [3] , Eaton S. [3] , Waddington S. [5] , Makris G. [4] , Baruteau J. [3] , Haeberle J. [4] | |
[1] Telethon Institute of Genetics and Medicine ~ Pozzuoli ~ Italy, [2] Institute of Biomolecular Chemistry, National Research Council ~ Pozzuoli ~ Italy, [3] Great Ormond Street Institute of Child Health, University College London ~ London ~ United Kingdom, [4] Division of Metabolism, University Children's Hospital Zurich and Children's Research Center ~ Zurich ~ Switzerland, [5] Institute of Women's Health, University College London ~ London ~ United Kingdom | |
P.11.97 | INTEGRATED APPROACHES TO GENE THERAPY OF WILSON DISEASE |
Piccolo P. *, Monti M. , Padula A. , Ferriero R. | |
Telethon Institute of Genetics and Medicine ~ Pozzuoli ~ Italy |
12_Chromosomal anomaly
P.12.98 | ANALYTICAL METHOD: VALIDATION AND ANALYSES OF STUDY SAMPLES |
Albertini P. *, Visigalli I. , Francesca C. , Vezzoli M. , Jofra Hernandez R. , De Simone M. , Costantini R. , Mauro V. | |
San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) ~ milano ~ Italy |
13_Genetic bone disease
P.13.100 | EXPANDED CIRCULATING HEMATOPOIETIC STEM/PROGENITOR CELLS AS A NOVEL CELL SOURCE FOR THE TREATMENT OF AUTOSOMAL RECESSIVE OSTEOPETROSIS |
Penna S. * [1] , Capo V. [1] , Merelli I. [2] , Barcella M. [1] , Scala S. [1] , Basso-ricci L. [1] , Draghici E. [1] , Sergi Sergi L. [1] , Palagano E. [3] , Zonari E. [1] , Desantis G. [1] , Uva P. [4] , Cusano R. [4] , Fontana E. [3] , Crisafulli L. [3] , Mantero S. [3] , Schinke T. [5] , Scanziani E. [6] , Aiuti A. [1] , Ficara F. [3] , Sobacchi C. [3] , Gentner B. [1] , Villa A. [1] | |
[1] San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) ~ Milan ~ Italy, [2] Institute for Biomedical Technologies, National Research Council ~ Segrate ~ Italy, [3] CNR-IRGB, Milan Unit ~ Milan ~ Italy, [4] CRS4, Science and Technology Park Polaris ~ Pula ~ Italy, [5] Institut für Osteologie und Biomechanik ~ Hamburg ~ Germany, [6] Department of Veterinary Medicine ~ Milan ~ Italy | |
P.13.101 | EMERGING ROLES OF ER-PHAGY IN MAINTAINING CELLULAR FITNESS AND FUNCTION IN CHONDROCYTES |
De Leonibus C. * [2] , Cinque L. [1] , Barolomeo R. [1] , Forrester A. [1] , Settembre C. [1] | |
[1] Telethon Institute of Genetics and Medicine ~ Napoli ~ Italy, [2] ~ Italy | |
P.13.102 | PROTEOSTASIS IN THE EARLY SECRETORY COMPARTMENT AS A PATHOGENETIC MECHANISM AND THERAPEUTIC TARGET: ALTERED COLLAGEN BIOSYNTHESIS AND BONE DEVELOPMENT IN THE ABSENCE OF ERP44, A ZINC-REGULATED CHAPERONE |
Sitia R. *, Anelli T. , Orsi A. , Sorrentino I. , Tempio T. , Yoboue E. | |
UniSR ~ Milan ~ Italy | |
P.13.103 | FIBROUS DYSPLASIA: A ROADMAP TO TREATMENT ENABLED BY DISCOVERY OF UNPREDICTED MECHANISMS IN FIRST-IN CLASS MOUSE MODELS. |
Riminucci M. * [1] , Remoli C. [1] , Palmisano B. [1] , Labella R. [1] , Donsante S. [1] , Di Filippo A. [1] , Persichetti A. [1] , Coletta I. [1] , Spica E. [1] , Saggio I. [2] , Robey P. [3] , Corsi A. [1] | |
[1] Department of Molecular Medicine, Sapienza University of Rome ~ Rome ~ Italy, [2] Dept of Biology and Biotechnology “C Darwin” Sapienza University ~ Rome ~ Italy, [3] Skeletal Biology Section, NICDR, NIH ~ Bethesda ~ United States of America | |
P.13.104 | TMEM16E / ANO5 MUTATIONS RELATED TO BONE DYSPLASIA OR MUSCULAR DYSTROPHY CAUSE OPPOSITE EFFECTS ON LIPID SCRAMBLING |
Boccaccio A. *, Di Zanni E. , Gradogna A. , Picco C. , Scholz-starke J. | |
IBF - CNR ~ Genova ~ Italy | |
P.13.105 | OSTEOPETROSIS AND BARTTER SYNDROME: STRUCTURAL-FUNCTIONAL INVESTIGATION OF MUTATIONS CAUSING DISEASES |
Di Zanni E. *, Lagostena L. , Picollo A. | |
Istituto di Biofisica ~ Genova ~ Italy | |
P.13.99 | AUTOSOMAL DOMINANT OSTEOPETROSIS TYPE 2 (ADO2): CLOSE TO THE CURE. WHAT DO WE MISS? |
Teti A. M. *, Maurizi A. , Rucci N. | |
Università dell'Aquila ~ L'Aquila ~ Italy |
14_Genetic cardiac disease
P.14.106 | OXIDIZED LDL/CD36/PPARΓ CIRCUITRY IS A TRIGGER OF ADIPOGENESIS IN ARRHYTHMOGENIC CARDIOMYOPATHY |
Sommariva E. * [1] , Stadiotti I. [1] , Casella M. [1] , Catto V. [1] , Dello Russo A. [1] , Arnaboldi L. [3] , Milano G. [1] , Scopece A. [1] , Koenig E. [2] , Meraviglia V. [2] , De Musso M. [2] , Volani C. [2] , Turnu L. [1] , Andreini D. [1] , Corsini A. [3] , Tondo C. [1] , Rossini A. [2] , Pompilio G. [1] | |
[1] Centro Cardiologico Monzino IRCCS ~ Milano ~ Italy, [2] Institute for Biomedicine, Eurac Research ~ Bolzano ~ Italy, [3] Università degli Studi di Milano ~ Milano ~ Italy |
15_Genetic developmental defect during embryogenesis
P.15.107 | MUTATIONS OF THE SUBCORTICAL MATERNAL COMPLEX AND IMPRINTING DISORDERS: HOW THE GENOTYPE INTERACTS WITH THE EPIGENOTYPE |
Riccio A. * | |
CNR, Istituto di genetica e Biofisica A. Buzzati-Traverso ~ Napoli ~ Italy | |
P.15.108 | A NOVEL SEMA3G MUTATION IN TWO SIBLINGS AFFECTED BY HYPOGONADISM, DEVELOPMENTAL DELAY AND FACIAL MALFORMATIONS |
Oleari R. * [1] , Lettieri A. [1] , Eberini I. [1] , Bedogni F. [2] , Gaston-massuets C. [3] , Cariboni A. [1] | |
[1] Univerisity of MIlan, DISFEB ~ Milan ~ Italy, [2] San Raffaele Scientific Institute ~ Milan ~ Italy, [3] Queen Mary University ~ London ~ United Kingdom |
16_Genetic eye disease
P.16.109 | INHIBITION OF AUTOPHAGY CURTAILS VISUAL LOSS IN A MODEL OF AUTOSOMAL DOMINANT OPTIC ATROPHY |
Scorrano L. * | |
University of Padua, Dept. of Biology and VIMM ~ Padova ~ Italy | |
P.16.110 | CONE DYSTROPHIES AND RETINAL DEGENERATION FROM PROTEIN STRUCTURES TO BIOLOGICAL NETWORKS: TOWARD THE DESIGN OF THERAPEUTIC MOLECULES. |
Dell'Orco D. * [1] , Asteriti S. [1] , Bonì F. [2] , Dal Cortivo G. [1] , Marino V. [3] , Cangiano L. [3] , Milani M. [4] | |
[1] University of Verona ~ Verona ~ Italy, [2] University of Milan ~ Milan ~ Italy, [3] University of Pisa ~ Pisa ~ Italy, [4] CNR Biophysics ~ Milan ~ Italy | |
P.16.111 | ENZYMATIC PHENOTYPE AND RESPONSE TO VITAMIN B6 OF ORNITHINE AMINOTRANSFERASE VARIANTS ASSOCIATED WITH GYRATE ATROPHY OF THE CHOROID AND RETINA |
Montioli R. * [1] , Sgaravizzi G. [4] , Desbats M. [2] , Grottelli S. G. [4] , Paiardini A. P. [3] , Giardina G. [3] , Zanzoni S. [5] , Cutruzzolà F. [3] , Borri Voltattorni C. [1] , Salviati L. [2] , Cellini B. [4] | |
[1] Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona ~ Verona ~ Italy, [2] Clinical Genetics Unit, Department of Woman and Child Health ~ Padova ~ Italy, [3] Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome ~ Rome ~ Italy, [4] Department of Experimental Medicine, University of Perugia ~ Perugia ~ Italy, [5] Centro Piattaforme Tecnologiche, University of Verona ~ Verona ~ Italy | |
P.16.112 | MODULATION OF MICRORNA EXPRESSION: A NEW THERAPEUTIC AVENUE FOR INHERITED RETINAL DISEASE? |
Banfi S. * [2] , Carrella S. [1] , Karali M. [1] , Guadagnino I. [1] , Pizzo M. [1] , Ruiz Ceja K. A. [1] | |
[1] Teleton Institute of Genetics and Medicine (TIGEM) ~ Pozzuoli ~ Italy, [2] ~ Italy | |
P.16.113 | THERAPEUTIC TARGETING OF MIR-211/EZRIN AXIS PREVENTS RETINAL DEGENERATION IN THE RHOP23H MOUSE MODEL |
Conte I. *, Intartaglia D. , Giamundo G. , Salierno F. G. | |
Telethon Institute of Genetics and Medicine ~ pozzuoli ~ Italy | |
P.16.114 | PIGMENT EPITHELIUM-DERIVED FACTOR (PEDF) PEPTIDES AS THERAPEUTIC AGENTS FOR INHERITED RETINAL DEGENERATION |
Comitato A. * [1] , Becerra P. [2] , Marigo V. [1] | |
[1] University of Modena and Reggio Emilia ~ Modena ~ Italy, [2] National Institute of Health, National Eye Institute ~ Bethesda ~ United States of America | |
P.16.115 | INTEIN-MEDIATED PROTEIN TRANS-SPLICING EXPANDS ADENO-ASSOCIATED VIRUS TRANSFER CAPACITY IN THE RETINA |
Tornabene P. * [1] , Trapani I. [1] , Minopoli R. [2] , Centrulo M. [2] , Lupo M. [2] , De Simone S. [2] , Tiberi P. [2] , Dell'Aquila F. [2] , Marrocco E. [2] , Iodice C. [2] , Iuliano A. [2] , Gesualdo C. [3] , Rossi S. [3] , Giaquinto L. [2] , Albert S. [4] , Hoyng C. [5] , Polishchuk E. [2] , Cremers F. [4] , Surace E. M. [2] , Simonelli F. [3] , De Matteis A. [2] , Polishchuk R. [2] , Auricchio A. [6] | |
[1] Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli ~ Medical Genetics, Department of Translational medicine, Federico II University, Naples ~ Italy, [2] Telethon Institute of Genetics and Medicine (TIGEM) ~ Pozzuoli ~ Italy, [3] Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, "Federico II" University ~ Naples ~ Italy, [4] Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center ~ Nijmegen ~ Netherlands, [5] Department of Ophthalmology and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center ~ Nijmegen ~ Netherlands, [6] Telethon Institute of Genetics and Medicine (TIGEM),Pozzuoli ~ Department of Advanced Biomedicine, Federico II University, Naples ~ Italy |
17_Genetic gastroenterological disease
P.17.116 | DISCOVERING MOLECULAR DEFECTS OF SEVERE GUT DYSFUNCTION: NEW ABNORMALITIES UNDERLYING CHRONIC INTESTINAL PSEUDO-OBSTRUCTION (CIPO) |
Bonora E. * [1] , Bianco F. [1] , De Giorgio R. [2] | |
[1] Department of Medical and Surgical Sciences ~ Bologna ~ Italy, [2] Deaprtment of Medical Sciences ~ Ferrara ~ Italy |
18_Genetic hematologic disease
P.18.117 | DEFINING HEMATOPOIESIS IN BETA-THALASSEMIA PATIENTS AND AFTER GENE THERAPY |
Lidonnici M. R. * [1] , Scaramuzza S. [1] , Rossi C. [1] , Tiboni F. [1] , Ciceri F. [2] , Aiuti A. [3] , Marktel S. [2] , Ferrari G. [1] | |
[1] San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS Ospedale San Raffaele ~ Milan ~ Italy, [2] Haematology and BMT Unit IRCCS Ospedale San Raffaele ~ Milan ~ Italy, [3] Pediatric Immunohematology IRCCS Ospedale San Raffaele ~ Milan ~ Italy | |
P.18.118 | REGULATION OF HEMATOPOIESIS IN NORMAL AND STRESSED CONDITIONS |
Aprile A. * [1] , Lidonnici M. R. [1] , Gulino A. [2] , Storto M. [1] , Villa I. [3] , Beretta S. [1] , Merelli I. [1] , Rubinacci A. [3] , Ponzoni M. [4] , Marktel S. [5] , Tripodo C. [2] , Ferrari G. [1] | |
[1] San Raffaele-Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele ~ Milan ~ Italy, [2] Tumor Immunology Unit, Department of Health Sciences, University of Palermo ~ Palermo ~ Italy, [3] Bone Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele ~ Milan ~ Italy, [4] Pathology Unit, IRCCS Ospedale San Raffaele ~ Milan ~ Italy, [5] Hematology and Bone Marrow Transplantation Unit, IRCCS Ospedale San Raffaele ~ Milan ~ Italy | |
P.18.119 | GENE THERAPY FOR THE TREATMENT OF ADULT AND PEDIATRIC PATIENTS AFFECTED BY TRANSFUSION DEPENDENT BETA-THALASSEMIA |
Scaramuzza S. * [4] , Marktel S. [5] , Giglio F. [5] , Cicalese M. P. [6] , Lidonnici M. R. [4] , Rossi C. [4] , Calbi V. [6] , Masera N. [7] , D'Angelo E. [1] , Mirra N. [1] , Origa R. [8] , Tartaglione I. [2] , Perrotta S. [2] , Viarengo G. [3] , Santoleri L. [9] , Milani R. [9] , Gattillo S. [9] , Calabria A. [4] , Montini E. [4] , Graziadei G. [10] , Naldini L. [4] , Cappellini M. D. [10] , Aiuti A. [6] , Ciceri F. [5] , Ferrari G. [4] | |
[1] Pediatric Clinic/DH Fondazione IRCCS Ca' Granda ~ MILAN ~ Italy, [2] UNIVERSITA' DEGLI STUDI DELLA CAMPANIA LUIGI VANVITELLI ~ NAPLES ~ Italy, [3] IMMUNOHEMATOLOGY AND TRANSFUSION MEDICINE SERVICE FONDAZIONE IRCCS POLICLINICO SAN MATTEO ~ PAVIA ~ Italy, [4] San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute ~ MILAN ~ Italy, [5] Haematology and BMT Unit, IRCCS San Raffaele Scientific Institute ~ MILAN ~ Italy, [6] Pediatric Immunohematology, IRCCS San Raffaele Scientific Institute ~ MILAN ~ Italy, [7] Pediatric Department University of Milano-Bicocca, San Gerardo Hospital ~ MILAN ~ Italy, [8] Department of Biomedical Science and Biotechnology University of Cagliari ~ CAGLIARI ~ Italy, [9] Blood Transfusion Service, IRCCS San Raffaele Scientific Institute ~ MILAN ~ Italy, [10] Rare Disease Center, Fondazione IRCCS Ca' Granda ~ MILAN ~ Italy | |
P.18.120 | DISSECTING CELL SENESCENCE PROGRAMS IN THE HEMATOPOIETIC COMPARTMENT |
Di Micco R. * | |
SR-TIGET ~ MIlan ~ Italy | |
P.18.121 | LIVER-DIRECTED GENE THERAPY WITH LENTIVIRAL VECTORS ACHIEVE NORMAL LEVELS OF CLOTTING FACTOR VIII AND IX IN NON-HUMAN PRIMATES |
Cantore A. * [1] , Milani M. [1] , Canepari C. [1] , Annoni A. [1] , Liu T. [2] , Biffi M. [1] , Patarroyo-white S. [2] , Ayuso E. [3] , Peters R. [2] , Naldini L. [1] | |
[1] SR-Tiget ~ Milan ~ Italy, [2] Sanofi ~ Waltham ~ United States of America, [3] University of Nantes ~ Nantes ~ France | |
P.18.122 | CONVENTIONAL DCS AND ENDOGENOUS TRYPTOPHAN DERIVATIVES PREVENT THE DEVELOPMENT OF ANTI-FVIII ANTIBODIES IN HEMOPHILIA A MODEL |
Fallarino F. * [4] , Matino D. [1] , Gargaro M. [1] , De Luca A. [1] , Scalisi G. [1] , Manni G. [1] , Javier Quintana F. [2] , Iorio A. [3] | |
[1] University of Perugia ~ Perugia ~ Italy, [2] Brigham and Women's Hospital Harvard Medical School ~ Boston (USA) ~ United States of America, [3] McMaster University ~ Hamilton ~ Cameroon, [4] ~ Italy | |
P.18.123 | FROM COAGULATION TO ANGIOGENESIS: NEW ROLES FOR FVIII IN ENDOTHELIAL FUNCTIONALITY |
Olgasi C. * [1] , Famà R. [1] , Walker G. [1] , Cucci A. [1] , Borroni E. [1] , Merlin S. [1] , Borsotti C. [1] , Oliviero S. [2] , Follenzi A. [1] | |
[1] Universià del Piemonte Orientale ~ Novara ~ Italy, [2] Università degli Studi di Torino ~ Torino ~ Italy | |
P.18.124 | GENOMIC MECHANISMS OF HUMAN GRANULOPOIESIS: IMPLICATIONS FOR BONE MARROW RECONSTITUTION AFTER GENE THERAPY |
Ostuni R. * [1] , Montaldo E. [1] , Bianchessi V. [1] , Lusito E. [1] , Scala S. [1] , Basso-ricci L. [1] , Cantaffa C. [1] , Barresi S. [1] , Barbiera G. [1] , Xue E. [2] , Messina C. [2] , Lazzari L. [2] , Tassara M. [2] , Milani R. [2] , Malabarba L. [2] , Gattillo S. [2] , Santoleri L. [2] , Tresoldi C. [2] , Belfiori G. [2] , Crippa S. [2] , Falconi M. [2] , Naldini L. [1] , Ciceri F. [1] , Aiuti A. [1] | |
[1] San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute ~ Milan ~ Italy, [2] IRCCS San Raffaele Scientific Institute ~ Milan ~ Italy | |
P.18.125 | MESODERMAL RETINOIC ACID SIGNALING REGULATES THE SPECIFICATION OF HUMAN DEFINITIVE HEMATOPOIETIC PROGENITORS FROM HUMAN PLURIPOTENT STEM CELLS |
Scarfò R. * [1] , Luff S. [2] , Maffioletti S. [1] , Dege C. [2] , Creamer J. P. [2] , Choi K. [2] , Morris S. [2] , Sturgeon C. M. [2] , Ditadi A. [1] | |
[1] Milan ~ San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute ~ Italy, [2] Saint Louis ~ Department of Medicine, Division of Hematology, Washington University in Saint Louis ~ United States of America | |
P.18.126 | MODELLING THE EMBRYONIC ORIGIN OF OMENN SYNDROME AUTO-REACTIVE T-CELLS |
Cascione S. *, Rigoni R. , Squadrito M. , Villa A. , Ditadi A. | |
Telethon Institute for Gene Therapy (SR-Tiget) ~ Milano ~ Italy | |
P.18.127 | EX VIVO EXPANSION OF GENETICALLY-ENGINEERED HEMATOPOIETIC STEM AND PROGENITOR CELLS FROM MOBILIZED PERIPHERAL BLOOD |
Gentner B. * [1] , Zonari E. [1] , Naldini M. M. [1] , Galasso I. [1] , Barcella M. [1] , Volpin M. [1] , Casirati G. [2] , Desantis G. [1] , Beretta S. [1] , Merelli I. [3] , Ciceri F. [2] , Montini E. [1] | |
[1] SR-TIGET ~ Milano ~ Italy, [2] Hematology&BMT Unit, Ospedale San Raffaele ~ Milano ~ Italy, [3] ITB-CNR ~ Milano ~ Italy | |
P.18.128 | GENE CORRECTION OF CD40LG GENE IN T CELLS AND HSPC FOR THE TREATMENT OF X-LINKED HYPER-IGM IMMUNODEFICIENCY |
Villa A. * [1] , Vavassori V. [1] , Mercuri E. [1] , Schiroli G. [1] , Marcovecchio G. [1] , Castiello M. C. [1] , Annoni A. [1] , Albano L. [1] , Capo V. [1] , Margulies C. [2] , Buquicchio F. [2] , Cotta-ramusino C. [2] , Naldini L. [1] , Genovese P. [1] | |
[1] San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute ~ Milan ~ Italy, [2] Editas Medicine ~ Boston ~ United States of America |
19_Genetic hepatic disease
P.19.129 | IDENTIFICATION AND THERAPEUTIC TARGETING OF NEW MOLECULAR PATHWAYS IN WILSON DISEASE |
Catalano F. *, Polishchuk E. , Petruzzelli R. , Concilli M. , Crispino R. , De Cegli R. , Carissimo A. , Polishchuk R. | |
Telethon Institute of Genetics and Medicine ~ Pozzuoli ~ Italy |
20_Genetic immune disease
P.20.130 | MODULATION OF LINE-1 RETROTRANSPOSITION BY AICARDI-GOUTIÈRES SYNDROME-RELATED GENES. |
Menetti V. *, Muzi Falconi M. | |
Università degli studi di Milano, Dipartimento di Bioscienze ~ Milano ~ Italy | |
P.20.131 | GENE THERAPY AND PATHOGENESIS OF CHRONIC GRANULOMATOUS DISEASE |
Jofra Hernandez R. *, Migliavacca M. , Scala S. , De Mattia F. , Basso-ricci L. , Calabria A. , Benedicenti F. , Farinelli G. , Ilaria Visigalli I. , Carriglio N. , De Simone M. , Vezzoli M. , Cecere F. , Norata R. , Mauro V. , Sanvito F. , Cristofori P. , Albertini P. , Mortellaro A. , Montini E. , Gentner B. , Naldini L. , Aiuti A. | |
San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget) ~ Milan ~ Italy | |
P.20.132 | SCREENING CVID PATIENTS WITH T CELL DEFECTS FOR PATHOGENIC VARIANTS OF CILIARY PROTEINS IDENTIFIES CCDC28 AS NEW PLAYER IN IMMUNE SYNAPSE ASSEMBLY |
Baldari C. T. * [1] , Onnis A. [1] , Capitani N. [1] , Cassioli C. [1] , Finetti F. [1] , Lougaris V. [2] , D'Elios M. M. [3] , Plebani A. [2] | |
[1] University of Siena ~ Siena ~ Italy, [2] University of Brescia ~ Brescia ~ Italy, [3] University of Florence ~ Florence ~ Italy | |
P.20.133 | MECHANISMS OF ENHANCED HEMATOPOIETIC STEM CELL TRANSDUCTION AND NUCLEIC ACID SENSING |
Kajaste-rudnitski A. * [1] , Petrillo C. [1] , Piras F. [1] , Unali G. [1] , Cittaro D. [2] , Calabria A. [1] , Castiglioni I. [1] , Cuccovillo I. [1] , Matafora V. [3] , Bachi A. [3] , Montini E. [1] , Aiuti A. [1] , Gentner B. [1] , Naldini L. [1] | |
[1] SR-TIGET ~ Milano ~ Italy, [2] San Raffaele Center for Translational Genomics and Bioinformatics ~ Milano ~ Italy, [3] FIRC Institute of Molecular Oncology Foundation (IFOM) ~ Milano ~ Italy | |
P.20.134 | ADVANCED GENETIC ENGINEERING OF HEMATOPOIETIC STEM/PROGENITOR CELLS |
Naldini L. * [2] , Ferrari S. [2] , Jacob A. [2] , Manzi M. [2] , Fiumara M. [2] , Mercuri E. [2] , Beretta S. [2] , Vavassori V. [2] , Albano L. [2] , Ranghetti A. [2] , Amabile A. [2] , Cittaro D. [1] , Lazarevic D. [1] , Merelli I. [3] , Lombardo A. [2] , Genovese P. [2] | |
[1] San Raffaele Scientific Institute ~ Milan ~ Italy, [2] San Raffaele Telethon Institute for Gene Therapy ~ Milan ~ Italy, [3] National Research Council, Institute for Biomedical Technologies ~ Milan ~ Italy | |
P.20.135 | REGULATION OF PATHOGEN-SPECIFIC T-CELL RESPONSES IN PATIENTS WITH HYPER-IGE SYNDROME (HIES) |
Geginat J. * [2] , Vasco C. [2] , Baselli L. [1] , Carrrabba M. [1] , Dellepiane R. [1] , Fabio G. [1] | |
[1] Fondazione IRCCS Ca Granda, Ospedale maggiore Policlinico ~ Milano ~ Italy, [2] Fondazione Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi ~ Milano ~ Italy | |
P.20.136 | EXPLORING THE PATHOGENETIC BASIS OF ICF SYNDROME WITH HUMAN INDUCED PLURIPOTENT STEM CELLS |
Matarazzo M. R. * [1] , Poondi-krishnan V. [1] , Morone B. [1] , Manco R. [1] , Toubiana S. T. [2] , Krzak M. [3] , Selig S. [2] , Angelini C. [3] , Strazzullo M. [1] | |
[1] Institute of Genetics and Biophysics "ABT" - CNR ~ Napoli ~ Italy, [2] Molecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion ~ Haifa ~ Israel, [3] Istituto per le Applicazioni del Calcolo "Mauro Picone” – CNR ~ Napoli ~ Italy | |
P.20.137 | IDENTIFICATION AND THERAPY OF COMBINED IMMUNODEFICIENCIES AND ADENOSINE DEAMINASE 2 DEFICIENCY |
Mortellaro A. * [1] , Brigida I. [1] , Zoccolillo M. [1] , Cicalese M. P. [2] , Jofra Hernandez R. [1] , Barzaghi F. [2] , Sartirana C. [1] , Sergi Sergi L. [1] , Scala S. [1] , Basso-ricci L. [1] , Naldini L. [1] , Aiuti A. [1] | |
[1] San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute ~ Milan ~ Italy, [2] Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute ~ Milan ~ Italy | |
P.20.138 | TARGETED GENOME EDITING IN RECOMBINATION ACTIVATING GENE 1 (RAG1): A PRECISE CORRECTION OF THE GENETIC DEFECT IN HUMAN SCID |
Villa A. * [1] , Castiello M. C. [1] , Sacchetti N. [2] , Draghici E. [1] , Vavassori V. [1] , Ferrari S. [1] , Notarangelo L. D. [3] , Naldini L. [1] , Genovese P. [1] | |
[1] San Raffaele Telethon Institute for Gene Therapy SR-Tiget, IRCCS San Raffaele Scientific Institute ~ Milan ~ Italy, [2] Vita-Salute San Raffaele University ~ Milan ~ Italy, [3] National Institute of Allergy and Infectious Diseases- National Institutes of Health, Laboratory of Clinical Immunology and Microbiology-Division of Intramural Research ~ Bethesda ~ United States of America | |
P.20.139 | NOVEL STRATEGIES TO GENERATE TOLEROGENIC DENDRITIC CELLS FOR ANTIGEN-SPECIFIC IMMUNOTHERAPY |
Passerini L. *, Santoni De Sio F. , Annoni A. , Amodio G. , Avancini D. , Andolfi G. , Passeri L. , Fresolone L. , Fortunato M. , Gregori S. | |
San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, ~ MILAN ~ Italy | |
P.20.140 | HSPC BIOLOGY: IN VIVO CLONAL TRACKING AND LINEAGE MODELING |
Scala S. * [1] , Basso-ricci L. [1] , Quaranta P. [1] , Dionisio F. [1] , Omrani M. [1] , Naldini M. M. [1] , Barcella M. [1] , Calabria A. [1] , Salerio F. A. [1] , Monti I. [1] , Giannelli S. [1] , Darin S. [2] , Migliavacca M. [2] , Merelli I. [1] , Gattillo S. [3] , Ostuni R. [1] , Ciceri F. [3] , Gentner B. [1] , Bernardo M. E. [1] , Ferrua F. [1] , Cicalese M. P. [1] , Aiuti A. [1] | |
[1] San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, ~ Milan ~ Italy, [2] Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute ~ Milan ~ Italy, [3] Division of Immunology, Transplantation, and Infectious Diseases, Immunohematology and transfusion medicine, San Raffaele Scientific Institute ~ Milan ~ Italy | |
P.20.141 | SAP AND DIACYLGLYCEROL KINASE Α RECIPROCALLY REGULATE TCR SIGNALLING |
Graziani A. * [1] , Velnati S. [3] , Malacarne V. [1] , Ruffo E. [2] , Mauro C. [2] , Massarotti A. [3] , Tron G. [3] , Baldanzi G. [3] | |
[1] Università di Torino ~ Torino ~ Italy, [2] Università Vita-Salute San Raffaele ~ Milan ~ Italy, [3] Università del Piemonte Orientale ~ Novara ~ Italy |
21_Genetic renal disease
P.21.142 | MOLECULAR MECHANISMS OF PATHOGENESIS AND PRECLINICAL TREATMENT IN RENAL DISORDERS ASSOCIATED WITH UROMODULIN MUTATIONS |
Rampoldi L. * [1] , Schaeffer C. [1] , Cratere M. [1] , Trudu M. [1] , Tammaro C. [1] , Riba M. [2] , Pasqualetto E. [1] , Lazarevic D. [2] , Scolari F. [3] | |
[1] Molecular Genetics of Renal Disorders, San Raffaele Scientific Institute ~ Milan ~ Italy, [2] Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute ~ Milan ~ Italy, [3] Division of Nephrology, Hospital of Montichiari ~ Montichiari ~ Italy | |
P.21.143 | UNRAVELLING THE ROLE OF PAX2 MUTATIONS IN HUMAN FOCAL SEGMENTAL GLOMERULOSCLEROSIS |
Trionfini P. *, Longaretti L. , Ciampi O. , Tomasoni S. , Benigni A. | |
Istituto di Ricerche Farmacologiche Mario Negri IRCCS ~ Bergamo ~ Italy | |
P.21.144 | DECODING AND TARGETING THE MTORC1-TFEB AXIS IN GENETIC DISEASES |
Ballabio A. *, Di Malta C. , Napolitano G. , Esposito A. , Benedetti V. , Zampelli A. , Matarese M. , Vilardo C. | |
TIGEM-TELETHON ~ POZZUOLI (NA) ~ Italy |
22_Genetic respiratory disease
P.22.145 | COMPUTATIONAL AND QUANTITATIVE BIOLOGY IN RARE GENETIC DISEASES. |
Di Bernardo D. * | |
TIGEM ~ Pozzuoli ~ Italy |
23_Genetic skin disease
P.23.146 | A FUNCTIONAL GENOMICS FRAMEWORK TO INVESTIGATE THE MOLECULAR BASES OF RARE GENETIC DISEASES |
Cacchiarelli D. *, Vaccaro L. , Panariello F. , Annunziata P. , Dionisi M. , Riccardo S. , Grimaldi A. , Bouche V. , Manfredi A. | |
TIGEM ~ Pozzuoli ~ Italy | |
P.23.147 | THERAPEUTIC STRATEGIES TO RESCUE SKIN EROSIONS IN AEC SYNDROME. |
Missero C. *, Sol S. , Urciuoli G. , Russo C. , Antonini D. | |
CEINGE ~ Napoli ~ Italy | |
P.23.148 | A THERAPEUTIC APPROACH FOR RARE GENODERMATOSES CAUSED BY ABERRANT CONNEXIN HEMICHANNELS |
Salvatore A. M. *, Mammano F. | |
Consiglio Nazionale delle Ricerche (CNR) ~ Roma (Monterotondo) e Napoli ~ Italy |
24_Genetic systemic or rheumatologic disease
P.24.149 | NEW PHARMACOLOGICAL TARGETS AND STRATEGIES IN AGEL AMYLOIDOSIS |
De Rosa M. * [2] , Diomede L. [1] , Giorgino T. [2] , Mastrangelo E. [2] , Barbiroli A. [3] , Milani M. [2] | |
[1] Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS ~ Milano ~ Italy, [2] Istituto di Biofisica, Consiglio Nazionale delle Ricerche ~ Milano ~ Italy, [3] DeFens, Università degli studi di Milano ~ Milano ~ Italy | |
P.24.150 | THE ROLE OF TELOMERIC DILNCRNAS AND DDRNAS IN THE HUTCHINSON–GILFORD PROGERIA SYNDROME |
Rossiello F. * [1] , Aguado J. [1] , Pessina F. [1] , Eriksson M. [2] , Tripodo C. [3] , Dreesen O. [4] , D'Adda Di Fagagna F. [1] | |
[1] IFOM Foundation—FIRC Institute of Molecular Oncology Foundation ~ Milano ~ Italy, [2] Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet ~ Huddinge ~ Sweden, [3] Tumor Immunology Unit, Department of Health Sciences, University of Palermo ~ Palermo ~ Italy, [4] Cell Ageing, Skin Research Institute Singapore ~ Singapore ~ Singapore | |
P.24.151 | IDENTIFICATION OF CORRECTORS OF LOWE SYNDROME |
De Matteis M. A. * [4] , Staiano L. [1] , Morra V. [1] , Vicinanza M. [1] , Medina Sanabria D. L. [1] , Santoro M. [1] , Di Tullio G. [1] , Nusco E. [1] , Nussbaum R. [2] , Devuyst O. [3] | |
[1] TIGEM ~ POZZUOLI (NA) ~ Italy, [2] INVITAE ~ SAN FRANCISCO, CA ~ United States of America, [3] UNIVERSITY OF ZURICH ~ ZURICH ~ Switzerland, [4] ~ NAPOLI ~ Italy |
25_Genetic vascular disease
P.25.152 | ENDOTHELIAL CELL CLONAL EXPANSION IN THE DEVELOPMENT OF CEREBRAL CAVERNOUS MALFORMATIONS |
Malinverno M. * [1] , Dejana E. [1] , Valentino M. E. [1] , Maderna C. [2] | |
[1] IFOM, FIRC Institute of Molecular Oncology ~ Milano ~ Italy, [2] ~ Milano ~ Italy | |
P.25.153 | CROSSTALK BETWEEN OXIDATIVE STRESS AND INFLAMMATION IN THE PATHOGENESIS OF CEREBRAL CAVERNOUS MALFORMATION (CCM) DISEASE: FROM THE IDENTIFICATION OF BASIC MECHANISMS TO THE DEVELOPMENT OF THERAPEUTIC STRATEGIES |
Retta S. F. * [1] , Perrelli A. [1] , Fornelli C. [1] , Goitre L. [1] , Antognelli C. [4] , Marchi S. [2] , Finetti F. [3] , Pinton P. [2] , Trabalzini L. [3] | |
[1] University of Torino ~ Torino ~ Italy, [2] University of Ferrara ~ Ferrara ~ Italy, [3] University of Siena ~ Siena ~ Italy, [4] University of Perugia ~ Perugia ~ Italy |
26_Undiagnosed diseases with proven genetic origin
P.26.154 | THREE YEARS OF THE TELETHON UNDIAGNOSED DISEASES PROGRAM: DATA AND FINDINGS |
Pinelli M. * [1] , Casari G. [1] , Selicorni A. [2] , Brunetti-pierri N. [3] , Torella A. L. [1] , Castello R. [1] , Cappuccio G. [1] , Musacchia F. [1] , Mutarelli M. [1] , Carrella D. [1] , Maitz S. [2] , Vitiello G. [1] , Fecarotta S. [4] , Leuzzi V. [5] , Scala M. [6] , Capra V. [6] , Nigro V. [1] | |
[1] Telethon Institute of Genetics and Medicine (TIGEM), [2] ASST Lariana, Sant'Anna General Hospital, Pediatric Department, Como, [3] TIGEM and Università di Napoli Federico II Napoli, [4] Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy, [5] Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy, [6] Neurosurgery service, Giannina Gaslini Institute, Genoa, Italy |
27_Genetic Biobanks
P.27.155 | TELETHON NETWORK OF GENETIC BIOBANKS |
Sangiorgi L. * [9] , Casareto L. [9] , Stroppiano M. [1] , Coviello D. [1] , Cilia R. [2] , Renieri A. [3] , Pegoraro E. [4] , Sciacco M. [5] , Mora M. [6] , Merla G. [7] , Politano L. [8] , Garavaglia B. [6] | |
[1] Istituto Giannina Gaslini ~ Genova ~ Italy, [2] Centro Parkinson, ASST Gaetano Pini-CTO ~ Milano ~ Italy, [3] University of Siena and Azienda Ospedaliera Universitaria Senese ~ Siena ~ Italy, [4] Università di Padova, Azienda Ospedaliera Universitaria ~ Padova ~ Italy, [5] Dino Ferrari Centre, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan ~ Milano ~ Italy, [6] Fondazione IRCCS Istituto Neurologico C. Besta ~ Milano ~ Italy, [7] IRCCS Casa Sollievo della Sofferenza ~ San Giovanni Rotondo ~ Italy, [8] Università degli Studi della Campania “Luigi Vanvitelli”, Azienda Ospedaliera Universitaria “Luigi Vanvitelli” ~ Napoli ~ Italy, [9] Istituto Ortopedico Rizzoli ~ Bologna ~ Italy |
28_Institutional posters
P.28.156 | TIGEM INSTITUTE OVERVIEW |
Tigem . * | |
Telethon Institute of Genetics and Medicine (TIGEM) ~ Pozzuoli ~ Italy | |
P.28.157 | SR-TIGET INSTITUTE OVERVIEW |
Paniccia A. * [1] , Naldini L. [2] | |
[1] San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute; Fondazione Telethon ~ Milan ~ Italy, [2] San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan; Vita-Salute San Raffaele University, Milan ~ Milan ~ Italy | |
P.28.158 | L’UNIVERSO TELETHON: CHI SIAMO, COSA FACCIAMO E PER CHI LAVORIAMO |
Fondazione Telethon . * | |
Fondazione Telethon ~ Roma ~ Italy | |
P.28.159 | LA RACCOLTA FONDI: COSA SI FA E CHI CI LAVORA |
Fondazione Telethon . * | |
Fondazione Telethon ~ Roma ~ Italy | |
P.28.160 | I NOSTRI PRODOTTI DI PIAZZA |
Fondazione Telethon . * | |
Fondazione Telethon ~ Roma ~ Italy | |
P.28.161 | IO ADOTTO IL FUTURO: IL PROGRAMMA DI DONAZIONE REGOLARE |
Fondazione Telethon . * | |
Fondazione Telethon ~ Roma ~ Italy | |
P.28.162 | VIAGGIO AL CENTRO DEI SOCIAL TELETHON |
Fondazione Telethon . * | |
Fondazione Telethon ~ Roma ~ Italy | |
P.28.163 | MONITORING FONDAZIONE TELETHON’S RESEARCH INVESTMENT FOR A STRATEGIC PORTFOLIO MANAGEMENT |
Borrè A. *, Monaco L. , Baldessari D. | |
Fondazione Telethon - Research Impact and Strategic Analysis – Centro Studi ~ Milan ~ Italy | |
P.28.164 | FROM THE DEFINITION OF RESEARCH INITIATIVES TO THE MONITORING OF FUNDED RESEARCH: THE TELETHON RESEARCH TEAM AT A GLANCE |
Rizzi E. * [2] , Battaglia M. [1] , Ambrosini A. [2] , Zatti A. [2] , Bruno E. [2] | |
[1] Fondazione Telethon - Head of Research ~ Milano ~ Italy, [2] Fondazione Telethon, Research ~ Milano ~ Italy | |
P.28.165 | BUSINESS DEVELOPMENT OFFICE: FROM THE LAB TO THE MARKET |
Varani S. *, Merico A. , Basilico F. , Beltrami E. , Sanavio B. | |
Fondazione Telethon, Business Development Office ~ Milano ~ Italy | |
P.28.166 | ALLIANCE MANAGEMENT & REGULATORY AFFAIRS - DRIVING INDUSTRIAL COLLABORATIONS TO SPEED UP THE DEVELOPMENT OF ADVANCED THERAPIES AND MAKE THEM AVAILABLE TO PATIENTS |
Farinelli G. * [2] , Gabaldo M. [1] , Forni C. [2] | |
[1] Telethon Foundation, Head of Alliance Management and Regulatory Affairs ~ Milan ~ Italy, [2] Telethon Foundation, SR-TIGET Alliance Management and Regulatory Affairs Unit ~ Milan ~ Italy | |
P.28.167 | CLINICAL DEVELOPMENT AND JUST LIKE HOME - HIGH QUALITY SUPPORT FOR CLINICAL TRIALS AND PATIENTS |
Levi M. * [5] , Zancan S. [1] , Corti A. [2] , Graziano A. [3] , Acerra C. [4] | |
[1] Telethon Foundation, Head of Clinical Development Just Like Home ~ Milano ~ Italy, [2] Telethon Foundation, SR-Tiget Clinical Trial Unit ~ Milano ~ Italy, [3] Telethon Foundation, Attiivita’ Specialistica di Eccellenza di Terapie Avanzate ~ Napoli ~ Italy, [4] Telethon Foundation, Unita’ di Terapie Avanzate per le Malattie Oculari Ereditarie ~ Napoli ~ Italy, [5] Telethon Foundation, Just Like Home, Milano. ~ Milano ~ Italy | |
P.28.168 | ADVANCING RARE GENETIC DISEASE RESEARCH AND THERAPY DEVELOPMENT VIA INTERNATIONAL PARTNERSHIPS AND PROJECTS |
Benvenuti S. * [1] , Wang C. M. [1] , Monaco L. [2] , Gabaldo M. [3] | |
[1] Global Partnerships & Projects - Fondazione Telethon ~ Milano ~ Italy, [2] Centro Studi - Fondazione Telethon ~ Milano ~ Italy, [3] Regulatory & Alliance - Fondazione Telethon ~ Milano ~ Italy | |
P.28.169 | THE INTERNATIONAL RARE DISEASES RESEARCH CONSORTIUM (IRDIRC) |
D'Angelo C. S. * [1] , Julkowska D. [1] , Zanello G. [1] , Buchholz K. [2] , Wang C. M. [3] , Pearce D. [2] , Monaco L. [3] | |
[1] IRDiRC Scientific Secretariat, Inserm ~ Paris ~ France, [2] Sanford Health ~ Sioux Falls, South Dakota ~ United States of America, [3] Fondazione Telethon ~ Milano ~ Italy | |
P.28.170 | THE EUROPEAN JOINT PROGRAMME ON RARE DISEASES (EJP RD) |
D'Angelo C. S. *, Julkowska D. | |
EJP RD Coordination (Inserm) ~ Paris ~ France | |
P.28.171 | ARISLA, THE ITALIAN FOUNDATION FOR ALS RESEARCH: MISSION, VISION, AND OUTCOMES OF TEN-YEAR INVESTMENT |
Ravasi M. * [1] , Guareschi S. [1] , Pozzi S. [2] , Munari L. M. [1] , Ambrosini A. [1] | |
[1] Fondazione Italiana di ricerca per la SLA - Sclerosi Laterale Amiotrofica ~ Milan ~ Italy, [2] Fondazione Telethon, Research Impact and Strategic Analysis ~ Mian ~ Italy |
Autori
|
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z |
A | |
Acampora D. | P.08.49 |
Accordini S. | P.01.3 |
Acerra C. | P.28.167 |
Acosta M. | P.11.92 |
Acquati S. | P.11.93 |
Agosto C. | P.04.27, P.04.30 |
Aguado J. | P.24.150 |
Aiuti A. | P.11.93, P.13.100, P.18.117, P.18.119, P.18.124, P.20.131, P.20.133, P.20.137, P.20.140 |
Albanese Y. | P.10.67 |
Albano L. | P.18.128, P.20.134 |
Albert S. | P.16.115 |
Alberti M. | P.09.53, P.09.54 |
Albertini P. | P.12.98, P.20.131 |
Alessio Z. | P.09.56 |
Altucci L. | P.08.49 |
Alves M. | P.10.65 |
Alvino F. | P.10.76 |
Amabile A. | P.20.134 |
Ambrosini A. | P.28.164, P.28.171 |
Ambrosino P. | P.08.50 |
Amodio G. | P.20.139 |
Andolfi G. | P.20.139 |
Andreazzoli M. | P.09.56 |
Andreini D. | P.14.106 |
Anelli T. | P.13.102 |
Angelini Claudia | P.20.136 |
Angelini Corrado | P.02.17 |
Angiolillo S. | P.10.74 |
Annoni A. | P.11.94, P.18.121, P.18.128, P.20.139 |
Annunziata P. | P.23.146 |
Antognelli C. | P.25.153 |
Antonietti A. | P.01.8 |
Antonini D. | P.23.147 |
Antonini F. | P.01.6 |
Antonucci F. | P.07.40 |
Aprile A. | P.18.118 |
Aquino D. | P.04.25 |
Arca M. | P.02.17 |
Argenton F. | P.04.22, P.04.24 |
Arnaboldi L. | P.14.106 |
Artuso V. | P.10.67 |
Assunto A. | P.11.90 |
Asteriti S. | P.16.110 |
Auricchio A. | P.16.115 |
Avancini D. | P.20.139 |
Ayuso E. | P.18.121 |
B | |
Baccega T. | P.11.89 |
Bachi A. | P.20.133 |
Bagnati R. | P.10.73 |
Baldanzi G. | P.20.141 |
Baldari C. T. | P.20.132 |
Baldassari S. | P.07.41, P.08.44 |
Baldelli P. | P.08.51 |
Baldessari D. | P.28.163 |
Baldoli C. | P.11.93 |
Balducci V. | P.02.15 |
Ballabio A. | P.21.144 |
Balzac F. | P.09.60 |
Banfi Sandro | P.10.75, P.16.112 |
Banfi Stefano | P.10.81 |
Baranello G. | P.04.27, P.04.30 |
Baratto S. | P.01.6 |
Barbato S. | P.10.75 |
Barberis A. | P.09.52 |
Barbiera G. | P.18.124 |
Barbieri R. | P.06.37 |
Barbiroli A. | P.24.149 |
Barcella M. | P.13.100, P.18.127, P.20.140 |
Barolomeo R. | P.13.101 |
Baroncelli L. | P.11.86 |
Barresi S. | P.18.124 |
Baruffini E. | P.04.22, P.04.24 |
Baruteau J. | P.11.96 |
Barzaghi F. | P.20.137 |
Baschiera E. | P.11.92 |
Baselli L. | P.20.135 |
Basilico F. | P.28.165 |
Bassani S. | P.08.48 |
Bassano M. | P.04.27, P.04.30 |
Basso D. | P.01.13 |
Basso M. | P.04.26, P.10.84 |
Basso-ricci L. | P.13.100, P.18.124, P.20.131, P.20.137, P.20.140 |
Battaglia M. | P.28.164 |
Battezzati A. | P.04.27, P.04.30 |
Beamer E. | P.10.65 |
Becchetti A. | P.10.72 |
Becerra P. | P.16.114 |
Bedogni F. | P.15.108 |
Bedogni G. | P.04.30 |
Beffagna G. | P.04.24 |
Belfiori G. | P.18.124 |
Beli R. | P.10.63 |
Bellenchi G. | P.10.76 |
Belli R. | P.09.56 |
Beltrami E. | P.28.165 |
Benedetti V. | P.21.144 |
Benedicenti F. | P.20.131 |
Benfenati F. | P.08.44, P.08.51 |
Benigni A. | P.21.143 |
Bentivoglia M. | P.06.33 |
Benvenuti S. | P.28.168 |
Benzi A. | P.01.6 |
Beretta Stefania | P.08.47 |
Beretta Stefano | P.18.118, P.18.127, P.20.134 |
Bernabò P. | P.01.11 |
Bernardi P. | P.01.12, P.10.72, P.11.92 |
Bernardo M. E. | P.11.93, P.20.140 |
Bersani M. | P.04.29 |
Bertelli S. | P.06.37 |
Bertini E. S. | P.04.27, P.04.30, P.07.43 |
Bertoli S. | P.04.27, P.04.30 |
Bett G. C. L. | P.09.60 |
Bianchessi V. | P.18.124 |
Bianchi M. L. | P.01.2 |
Bianco F. | P.17.116 |
Biasini E. | P.10.64 |
Bifari F. | P.10.70 |
Biffi E. | P.01.8 |
Biffi M. | P.18.121 |
Biressi S. | P.01.3, P.01.4 |
Birolini G. | P.10.73 |
Bisogni G. | P.04.25 |
Bitan G. | P.10.77 |
Boccaccio A. | P.13.104 |
Boeckers T. | P.09.58 |
Boido M. M. | P.10.83 |
Bolino A. | P.04.20 |
Bolla M. | P.09.53 |
Bolognesi M. | P.10.68 |
Bon C. | P.07.42 |
Bonaccorso R. | P.01.7 |
Bonacina F. | P.11.88 |
Bonaldo P. | P.01.13, P.10.83 |
Bonato F. | P.10.68 |
Bonì F. | P.16.110 |
Bonora E. | P.17.116 |
Bordoni A. | P.04.29 |
Borgogno M. | P.09.53 |
Borrè A. | P.28.163 |
Borri Voltattorni C. | P.16.111 |
Borroni B. | P.10.84 |
Borroni E. | P.18.123 |
Borsotti C. | P.18.123 |
Bouche V. | P.23.146 |
Bozzetti M. G. | P.09.55 |
Bozzoni I. | P.01.5 |
Bresolin N. | P.04.29, P.05.31 |
Brigida I. | P.20.137 |
Brischigliaro M. | P.04.22, P.11.91 |
Broccoli V. | P.08.46, P.09.56, P.09.59, P.10.80 |
Broggi F. | P.01.2 |
Broggini L. | P.10.68 |
Brunetti-pierri N. | P.11.96, P.26.154 |
Bruno C. | P.01.1, P.01.6, P.04.27, P.04.30 |
Bruno E. | P.28.164 |
Brusco A. | P.10.84 |
Brusco S. | P.08.46 |
Bruzzone S. | P.01.6 |
Bucci C. | P.10.63 |
Buchholz K. | P.28.169 |
Buquicchio F. | P.18.128 |
Bussani E. | P.10.66 |
C | |
Cacace V. | P.10.77 |
Cacchiarelli D. | P.23.146 |
Cagnotto A. | P.10.81 |
Caiazzo M. | P.10.76 |
Cairati N. | P.06.34 |
Calabrese D. | P.04.25 |
Calabria A. | P.18.119, P.20.131, P.20.133, P.20.140 |
Calbi V. | P.18.119 |
Calderan C. | P.11.92 |
Calorio C. | P.09.60 |
Cambria C. | P.07.40 |
Cancedda L. | P.09.53, P.09.54 |
Canepari C. | P.18.121 |
Cangiano L. | P.16.110 |
Cantaffa C. | P.18.124 |
Cantore A. | P.18.121 |
Capasso P. | P.11.89 |
Capitani N. | P.20.132 |
Capo V. | P.13.100, P.18.128 |
Cappella M. | P.03.19 |
Cappellini M. D. | P.18.119 |
Cappelluti M. A. | P.11.89 |
Cappuccio G. | P.26.154 |
Capra V. | P.26.154 |
Carbognin E. | P.10.74 |
Carbone E. | P.09.60 |
Carbone F. | P.11.90 |
Cardani R. | P.03.19 |
Cardinali B. | P.01.9, P.03.19 |
Carecchio M. | P.10.80 |
Cariboni A. | P.15.108 |
Carissimo A. | P.19.129 |
Carninci P. | P.07.42 |
Carotti M. | P.01.10 |
Carrella D. | P.26.154 |
Carrella S. | P.10.75, P.16.112 |
Carriglio N. | P.20.131 |
Carrrabba M. | P.20.135 |
Caruso D. | P.10.84 |
Caruso E. | P.10.81 |
Casali C. | P.04.25 |
Casareto L. | P.27.155 |
Casari G. | P.10.72, P.26.154 |
Casarotto E. | P.10.82, P.10.83 |
Cascino F. | P.10.69 |
Cascione S. | P.18.126 |
Casella M. | P.14.106 |
Caserta I. | P.11.89 |
Casirati G. | P.18.127 |
Cassina L. | P.10.72 |
Cassioli C. | P.20.132 |
Castagnaro S. | P.01.13 |
Castagnetti F. | P.01.5 |
Castellani G. | P.06.35 |
Castello R. | P.26.154 |
Castiello M. C. | P.18.128, P.20.138 |
Castiglioni I. | P.20.133 |
Catalano F. | P.19.129 |
Cattaneo E. | P.10.73 |
Cattaneo F. | P.04.23 |
Cattaneo S. | P.09.56 |
Cattenoz P. | P.09.55 |
Catto V. | P.14.106 |
Cavestro C. | P.10.80 |
Cecatiello V. | P.10.81 |
Cecchele A. | P.10.69 |
Cecere F. | P.20.131 |
Cellini B. | P.16.111 |
Centrulo M. | P.16.115 |
Cerbai E. | P.02.15 |
Cereda C. | P.06.34 |
Cernigliaro C. | P.10.78 |
Cerqua C. | P.11.92 |
Cesana L. | P.11.94 |
Cescon M. | P.10.83 |
Cherubini E. | P.09.52 |
Chiantia G. | P.09.60 |
Chiapparini L. | P.04.25 |
Chierichetti M. | P.10.82, P.10.83 |
Chiesa R. | P.10.67, P.10.81 |
Chimenti C. | P.11.87 |
Chini B. | P.06.35 |
Choi K. | P.18.125 |
Ciampi O. | P.21.143 |
Ciampoli M. | P.06.35 |
Ciani E. | P.08.45 |
Cicalese M. P. | P.18.119, P.20.137, P.20.140 |
Cicardi M. E. | P.10.83 |
Ciceri F. | P.18.117, P.18.119, P.18.124, P.18.127, P.20.140 |
Cieri F. | P.04.28 |
Cilia R. | P.27.155 |
Cingolani L. | P.07.41 |
Cinque L. | P.13.101 |
Ciotti F. | P.11.93 |
Cittaro D. | P.20.133, P.20.134 |
Codazzi F. | P.10.72 |
Colamatteo A. | P.11.90 |
Colasante G. | P.08.46 |
Coletta I. | P.13.103 |
Collombat P. | P.08.49 |
Colombi I. | P.09.53, P.09.54 |
Comerio L. | P.10.81 |
Comi G. | P.01.1, P.04.21, P.04.29, P.05.31 |
Comitato A. | P.16.114 |
Concilli M. | P.19.129 |
Condò I. | P.07.42 |
Consalez G. | P.07.43 |
Conte A. | P.04.25 |
Conte I. | P.16.113 |
Contestabile A. | P.09.53, P.09.54 |
Coppini R. | P.02.15 |
Corcelli A. | P.11.85 |
Corrà S. | P.04.22, P.11.91 |
Corradi A. | P.08.44, P.08.51 |
Corsi A. | P.13.103 |
Corsini A. | P.14.106 |
Corti A. | P.28.167 |
Corti S. | P.04.29, P.05.31 |
Costa Roberto | P.11.91 |
Costa Rodolfo | P.04.22, P.11.91 |
Costantini R. | P.12.98 |
Costanzi C. | P.10.84 |
Cotella D. | P.07.42 |
Cotta-ramusino C. | P.18.128 |
Coviello D. | P.27.155 |
Cratere M. | P.21.142 |
Creamer J. P. | P.18.125 |
Cremers F. | P.16.115 |
Cremonesi M. | P.11.88 |
Crippa S. | P.18.124 |
Crippa V. | P.10.82, P.10.83 |
Crisafulli L. | P.13.100 |
Crispino R. | P.19.129 |
Cristofani R. | P.10.82, P.10.83 |
Cristofori P. | P.20.131 |
Croci L. | P.07.43 |
Cucci A. | P.18.123 |
Cuccovillo I. | P.20.133 |
Cuomo P. | P.11.96 |
Curto R. | P.11.94 |
Cusano R. | P.13.100 |
Cutruzzolà F. | P.16.111 |
D | |
Da Ros F. | P.01.13 |
D'Adda Di Fagagna F. | P.24.150 |
Daga A. | P.10.71 |
Dal Cortivo G. | P.16.110 |
Dalla Serra M. | P.01.11 |
Dallabona C. | P.04.22 |
Dallavalle S. | P.10.68 |
Damiano C. | P.11.95 |
D'Amico A. | P.01.1, P.04.30 |
D'Angelo C. S. | P.28.169, P.28.170 |
D'Angelo E. | P.18.119 |
D'Angelo G. | P.01.8 |
D'Antonio M. | P.04.20 |
Darin S. | P.20.140 |
D'Attis S. | P.09.55 |
Dazzo E. | P.08.44 |
De Amicis R. | P.04.27, P.04.30 |
De Angelis A. | P.11.96 |
De Cegli R. | P.19.129 |
De Franceschi M. | P.08.45 |
De Giorgio R. | P.17.116 |
De Leonibus C. | P.13.101 |
De Leonibus E. | P.10.75, P.10.76, P.10.77 |
De Luca A. | P.18.122 |
De Luca M. | P.10.63 |
De Matteis A. | P.16.115 |
De Matteis M. A. | P.24.151 |
De Mattia F. | P.20.131 |
De Musso M. | P.14.106 |
De Pittà C. | P.04.22, P.11.91 |
De Risi M. | P.10.76, P.10.77 |
De Rosa M. | P.24.149 |
De Simone M. | P.12.98, P.20.131 |
De Simone S. | P.16.115 |
De Stefani D. | P.10.65 |
De Vivo M. | P.09.53 |
Defilippi P. | P.09.60 |
Dege C. | P.18.125 |
Deidda G. | P.09.54 |
Dejana E. | P.25.152 |
Del Borrello R. | P.11.89 |
Del Zotto G. | P.01.6 |
Delahodde A. | P.04.24 |
D'Elios M. M. | P.20.132 |
Dell'Aquila F. | P.16.115 |
Dellepiane R. | P.20.135 |
Dello Russo A. | P.14.106 |
Dell'Orco D. | P.16.110 |
Desantis G. | P.13.100, P.18.127 |
Desbats M. | P.16.111 |
Devuyst O. | P.24.151 |
Di Bari M. | P.10.81 |
Di Bernardo D. | P.22.145 |
Di Campli A. | P.10.84 |
Di Carlo V. | P.01.5 |
Di Croce L. | P.01.5 |
Di Filippo A. | P.13.103 |
Di Gregorio E. | P.10.84 |
Di Malta C. | P.21.144 |
Di Meo I. | P.10.80 |
Di Micco R. | P.18.120 |
Di Schiavi E. | P.04.28, P.08.49 |
Di Tullio G. | P.24.151 |
Di Zanni E. | P.13.104, P.13.105 |
Diella E. | P.01.8 |
Diomede L. | P.24.149 |
Dionisi M. | P.23.146 |
Dionisio F. | P.20.140 |
Ditadi A. | P.18.125, P.18.126 |
Donati M. A. | P.02.15 |
Donnini C. | P.04.22, P.04.24 |
Donsante S. | P.13.103 |
D'Orsi B. | P.10.65 |
Draghici E. | P.13.100, P.20.138 |
Dreesen O. | P.24.150 |
Drongitis D. | P.08.49 |
Duchen M. | P.02.14 |
Duskey J. T. | P.10.81 |
E | |
Eaton S. | P.11.96 |
Eberini I. | P.15.108 |
Engel T. | P.10.65 |
Eriksson M. | P.24.150 |
Eskelinen E. | P.10.63 |
Espinoza S. | P.07.42 |
Esposito A. | P.21.144 |
Ester G. | P.04.27 |
Ezhova Y. | P.10.77 |
F | |
Fabio G. | P.20.135 |
Fabrizi G. M. | P.05.32 |
Facchinello N. | P.04.24 |
Fagnocchi L. | P.09.56 |
Falcone G. | P.01.9, P.03.19 |
Falconi M. | P.18.124 |
Fallarino F. | P.18.122 |
Famà R. | P.18.123 |
Farinelli G. | P.20.131, P.28.166 |
Fasciani A. | P.09.56 |
Fassio A. | P.08.51 |
Favero M. | P.06.36 |
Fazzi E. | P.06.34 |
Fecarotta S. | P.11.95, P.26.154 |
Fecchio C. | P.01.10 |
Fenu S. | P.04.25 |
Ferlazzo G. | P.10.74 |
Fernandez-vizarra E. | P.10.75 |
Ferrantini C. | P.02.15 |
Ferrari Aggradi C. | P.04.23 |
Ferrari G. | P.18.117, P.18.118, P.18.119 |
Ferrari S. | P.20.134, P.20.138 |
Ferrari V. | P.10.82, P.10.83 |
Ferraro M. G. | P.10.76 |
Ferrero M. | P.10.84 |
Ferretti V. | P.06.35 |
Ferriero R. | P.11.97 |
Ferrua F. | P.20.140 |
Ficara F. | P.13.100 |
Fiermonte G. | P.06.33 |
Filippo C. | P.07.43 |
Filisetti C. | P.11.93 |
Filosa S. | P.08.49 |
Filosto M. | P.04.25 |
Fimiani C. | P.07.42 |
Finetti Federica | P.25.153 |
Finetti Francesca | P.20.132 |
Fiumara M. | P.20.134 |
Florio F. | P.01.3, P.01.4 |
Focchi E. | P.07.40 |
Follenzi A. | P.18.123 |
Fondazione Telethon . | P.28.158, P.28.159, P.28.160, P.28.161, P.28.162 |
Fontana E. | P.13.100 |
Foppiani A. | P.04.27, P.04.30 |
Forloni G. | P.10.67 |
Fornelli C. | P.25.153 |
Forni C. | P.28.166 |
Forrester A. | P.13.101 |
Fortunato F. | P.04.21 |
Fortunato M. | P.20.139 |
Fortuni S. | P.07.42 |
Fraldi A. | P.10.76, P.10.77 |
Francesca C. | P.12.98 |
Franco B. | P.10.75 |
Fresolone L. | P.20.139 |
Frezza E. | P.04.23 |
Fruscione F. | P.07.41, P.08.44, P.08.51 |
Frustaci A. | P.11.87 |
Fuchs C. | P.08.45 |
Fumagalli F. | P.11.93 |
Fuschi P. | P.03.19 |
G | |
Gabaldo M. | P.28.166, P.28.168 |
Gabellini C. | P.09.56 |
Galasso I. | P.18.127 |
Galbiati M. | P.10.82, P.10.83 |
Galla L. | P.10.65 |
Gallotta I. | P.04.28 |
Galvani G. | P.08.45 |
Gambarotto L. | P.01.13 |
Gandolla M. | P.01.8 |
Garavaglia B. | P.27.155 |
Garcia-manteiga J. M. | P.03.19 |
Gargaro M. | P.18.122 |
Gaston-massuets C. | P.15.108 |
Gattillo S. | P.18.119, P.18.124, P.20.140 |
Gatto F. | P.11.95 |
Gavazzo P. | P.06.37 |
Gavello D. | P.09.60 |
Gazzerro E. | P.01.6 |
Gecz J. | P.08.49 |
Geginat J. | P.20.135 |
Gellera C. | P.04.25 |
Gennaccaro L. | P.08.45 |
Genovese P. | P.18.128, P.20.134, P.20.138 |
Gentile L. | P.05.32 |
Gentner B. | P.11.93, P.13.100, P.18.127, P.20.131, P.20.133, P.20.140 |
Gesualdo C. | P.16.115 |
Gharat V. | P.01.3 |
Ghezzi Daniele | P.04.22 |
Ghezzi Diego | P.09.54 |
Giamundo G. | P.16.113 |
Giangrande A. | P.09.55 |
Giannelli Serena | P.09.59 |
Giannelli Stefania | P.20.140 |
Giannini F. | P.04.25 |
Giaquinto E. | P.04.30 |
Giaquinto L. | P.16.115 |
Giardina G. | P.16.111 |
Gibson W. T. | P.09.61 |
Giglio F. | P.18.119 |
Giliani S. | P.06.34 |
Gillingwater T. | P.01.11 |
Ginevrino M. | P.07.43 |
Giona F. | P.09.58 |
Giordano A. M. S. | P.06.34 |
Giorgi F. | P.06.33 |
Giorgino T. | P.24.149 |
Giorgio E. | P.10.84 |
Giuliano T. | P.10.77 |
Giussani P. C. | P.10.78 |
Giustetto M. | P.08.45 |
Gobbi M. | P.10.81 |
Goffrini P. | P.04.22 |
Goitre L. | P.25.153 |
Golini E. | P.01.9 |
Gozzi A. | P.11.86 |
Gradogna A. | P.13.104 |
Gragnaniello V. | P.11.95 |
Grande C. | P.11.87 |
Grandinetti B. | P.02.15 |
Grandis M. | P.05.32 |
Grasselli G. | P.08.51 |
Grassi S. | P.10.78 |
Graziadei G. | P.18.119 |
Graziani A. | P.20.141 |
Graziano A. | P.28.167 |
Greco G. | P.04.23 |
Gregori S. | P.09.59, P.11.94, P.20.139 |
Greotti E. | P.10.65 |
Griguoli M. | P.09.52 |
Grimaldi A. | P.23.146 |
Gritti A. | P.06.34, P.10.69, P.10.70 |
Gritti L. | P.08.47 |
Groen E. | P.01.11 |
Grohovaz F. | P.10.72 |
Grottelli S. G. | P.16.111 |
Grumati P. | P.06.38 |
Guadagnino I. | P.16.112 |
Guareschi S. | P.28.171 |
Guarneri P. | P.10.78 |
Gulino A. | P.18.118 |
Gullo F. | P.10.72 |
Gustincich S. | P.07.42, P.08.49 |
H | |
Haeberle J. | P.11.96 |
Hentschel J. | P.06.33 |
Hidisoglu E. | P.09.60 |
Hoxha E. | P.10.84 |
Hoyng C. | P.16.115 |
I | |
Ilaria Visigalli I. | P.20.131 |
Indrieri A. | P.10.75 |
Indrigo M. | P.08.46, P.09.56, P.09.59 |
Inga A. | P.01.11 |
Intartaglia D. | P.16.113 |
Iodice C. | P.16.115 |
Iorio A. | P.18.122 |
Iuliano A. | P.16.115 |
Izzi F. | P.04.23 |
J | |
Jacob A. | P.20.134 |
Jaudon F. | P.07.41 |
Javier Quintana F. | P.18.122 |
Jofra Hernandez R. | P.12.98, P.20.131, P.20.137 |
Jones C. | P.09.58 |
Julkowska D. | P.28.169, P.28.170 |
K | |
Kajaste-rudnitski A. | P.06.34, P.20.133 |
Kallikourdis M. | P.11.88 |
Karali M. | P.16.112 |
Kheir E. | P.01.4 |
Kilstrup-nielsen C. | P.08.45 |
Klarner F. | P.10.77 |
Koenig E. | P.14.106 |
Krzak M. | P.20.136 |
L | |
La Marca G. | P.11.93 |
La Rocca F. | P.04.28 |
La Sala G. | P.09.53 |
Labella R. | P.13.103 |
Lagostena L. | P.13.105 |
Lamantea E. | P.04.22 |
Lamers D. | P.08.48, P.09.57 |
Lamperti C. | P.04.22 |
Langione M. | P.02.15 |
Lasorsa F. M. | P.06.33 |
Lauria F. | P.01.11 |
Lauritano A. | P.08.50 |
Lazarevic D. | P.20.134, P.21.142 |
Lazzari L. | P.18.124 |
Leanza L. | P.11.91 |
Leeb M. | P.10.74 |
Legati A. | P.04.22 |
Leone A. | P.04.27, P.04.30 |
Lettieri A. | P.15.108 |
Leuzzi V. | P.26.154 |
Levi M. | P.28.167 |
Levi S. | P.10.80 |
Lia F. | P.04.26 |
Libergoli M. | P.01.3, P.01.4 |
Lidonnici M. R. | P.18.117, P.18.118, P.18.119 |
Liguori C. | P.04.23 |
Lisi M. | P.01.5 |
Liu T. | P.18.121 |
Lobasso S. | P.11.85 |
Lodi T. | P.04.22, P.04.24 |
Lodovichi C. | P.09.57 |
Loi M. | P.08.45 |
Lombardo A. | P.06.34, P.11.89, P.20.134 |
Longaretti L. | P.21.143 |
Longatelli V. | P.01.8 |
Longatti A. | P.09.62 |
Longo M. | P.01.9 |
Longobardi E. | P.08.50 |
Lopalco P. | P.11.85 |
López Tobón A. | P.09.61 |
Lougaris V. | P.20.132 |
Lucca U. | P.10.67 |
Lucchetti J. | P.10.81 |
Lucchiari S. | P.04.21 |
Luciani M. | P.06.34, P.10.69 |
Luff S. | P.18.125 |
Luffarelli R. | P.07.42 |
Lunetta C. | P.04.25 |
Luoni M. | P.09.59 |
Lupi F. | P.02.15 |
Lupo M. | P.16.115 |
Lusito E. | P.18.124 |
M | |
Maderna C. | P.25.152 |
Maffia V. | P.10.77 |
Maffioletti S. | P.18.125 |
Magliano L. | P.05.32 |
Maglione V. | P.10.74 |
Maitz S. | P.26.154 |
Makris G. | P.11.96 |
Malabarba L. | P.18.124 |
Malacarne V. | P.20.141 |
Malinverno M. | P.25.152 |
Mallamaci A. | P.07.42 |
Mammano F. | P.23.148 |
Manco R. | P.20.136 |
Mancuso M. | P.02.16 |
Mandillo S. | P.01.9 |
Manes M. | P.10.84 |
Manfredi A. | P.23.146 |
Manganelli F. | P.10.63 |
Mangiameli E. | P.10.69 |
Maniscalco F. | P.01.11 |
Manni G. | P.18.122 |
Manno M. | P.10.68 |
Mantegazza M. | P.08.47 |
Mantero S. | P.13.100 |
Manzi M. | P.20.134 |
Maragliano L. | P.08.51 |
Marcantoni A. | P.09.60 |
Marchi S. | P.25.153 |
Marchioretto M. | P.01.11 |
Marcovecchio G. | P.18.128 |
Margulies C. | P.18.128 |
Marigo V. | P.16.114 |
Marino V. | P.16.110 |
Mariotti C. | P.04.25 |
Marktel S. | P.18.117, P.18.118, P.18.119 |
Marrocco E. | P.10.76, P.16.115 |
Martella D. | P.02.15 |
Martelli F. | P.01.9, P.03.19 |
Martello G. | P.10.74 |
Martini D. | P.09.56 |
Martini E. | P.11.88 |
Martino S. | P.10.69 |
Martone J. | P.01.5 |
Martorano L. | P.04.22 |
Masera N. | P.18.119 |
Maset A. | P.09.57 |
Masone A. | P.10.81 |
Massa F. | P.10.72 |
Massa R. | P.04.23 |
Massarotti A. | P.20.141 |
Massimiliano C. | P.01.11 |
Massimino L. | P.09.56, P.09.59 |
Masson R. | P.04.27, P.04.30 |
Mastella C. | P.04.27, P.04.30 |
Mastrangelo E. | P.24.149 |
Mastrototaro G. | P.09.56 |
Matafora V. | P.20.133 |
Matarazzo M. R. | P.20.136 |
Matarese G. | P.11.90 |
Matarese M. | P.21.144 |
Matino D. | P.18.122 |
Mattarei A. | P.10.71 |
Mattia Z. | P.09.56 |
Mattioli M. | P.10.70 |
Mauri L. | P.10.78 |
Maurizi A. | P.13.99 |
Mauro A. | P.05.32 |
Mauro C. | P.20.141 |
Mauro L. | P.04.23 |
Mauro V. | P.12.98, P.20.131 |
Mazzantini C. | P.02.15 |
Mazzeo A. | P.05.32 |
Mazzoleni S. | P.08.48 |
Medici G. | P.08.45 |
Medina Sanabria D. L. | P.24.151 |
Medina D. L. | P.06.39 |
Melis D. | P.11.90 |
Melzi V. | P.05.31 |
Meneghini S. | P.10.72 |
Menegollo M. | P.02.14 |
Menetti V. | P.20.130 |
Meola G. | P.03.19 |
Meraviglia V. | P.14.106 |
Mercolini L. | P.06.33 |
Mercuri E. | P.18.128, P.20.134 |
Merelli I. | P.13.100, P.18.118, P.18.127, P.20.134, P.20.140 |
Merico A. | P.28.165 |
Merla G. | P.27.155 |
Merlin S. | P.18.123 |
Merlini G. | P.05.32 |
Meroni M. | P.10.83 |
Messi E. | P.10.83 |
Messina C. | P.18.124 |
Metti S. | P.01.13 |
Miano M. G. | P.08.49 |
Micalizzi A. | P.07.43 |
Miceli F. | P.08.50 |
Michetti C. | P.08.51 |
Micillo T. | P.11.90 |
Migliara A. | P.06.34, P.11.89 |
Migliavacca M. | P.20.131, P.20.140 |
Miglietta S. | P.11.93 |
Milani Mario | P.16.110, P.24.149 |
Milani Michela | P.18.121 |
Milani R. | P.18.119, P.18.124 |
Milano G. | P.14.106 |
Minervini G. | P.04.26 |
Minetti C. | P.01.6 |
Mingozzi F. | P.04.21, P.09.53 |
Minopoli N. | P.11.95 |
Minopoli R. | P.16.115 |
Mirra N. | P.18.119 |
Missero C. | P.23.147 |
Mitro N. | P.10.84 |
Modi B. | P.09.52 |
Moggio M. | P.04.21 |
Molteni F. | P.01.8 |
Monaco A. | P.10.77 |
Monaco L. | P.28.163, P.28.168, P.28.169 |
Montaldo E. | P.18.124 |
Montano V. | P.02.16 |
Montesano M. | P.04.25 |
Monti B. | P.06.33 |
Monti I. | P.20.140 |
Monti M. | P.11.97 |
Montini E. | P.18.119, P.18.127, P.20.131, P.20.133 |
Montioli R. | P.16.111 |
Mora G. | P.04.25 |
Mora M. | P.27.155 |
Morena F. | P.10.69 |
Moro E. | P.10.74 |
Morone B. | P.20.136 |
Morra V. | P.24.151 |
Morris S. | P.18.125 |
Mortellaro A. | P.20.131, P.20.137 |
Mosca I. | P.08.50 |
Motta A. | P.11.96 |
Munari L. M. | P.28.171 |
Muntoni F. | P.02.14 |
Murru L. | P.07.40, P.08.48, P.09.62 |
Musacchia F. | P.26.154 |
Musarò A. | P.02.17 |
Musco G. | P.10.81 |
Mutarelli M. | P.26.154 |
Muzi Falconi M. | P.20.130 |
N | |
Naldini L. | P.06.34, P.11.93, P.11.94, P.18.119, P.18.121, P.18.124, P.18.128, P.20.131, P.20.133, P.20.134, P.20.137, P.20.138, P.28.157 |
Naldini M. M. | P.18.127, P.20.140 |
Napolitano G. | P.21.144 |
Nappi P. | P.08.50 |
Narducci R. | P.09.53 |
Nasca A. | P.04.22 |
Navas P. | P.11.92 |
Nigro V. | P.26.154 |
Nizzardo M. | P.04.29, P.05.31 |
Nobile C. | P.08.44 |
Nobili L. | P.04.23 |
Nolano M. | P.10.63 |
Nonno R. | P.10.81 |
Norata G. D. | P.11.88 |
Norata R. | P.20.131 |
Notarangelo L. D. | P.20.138 |
Nuovo S. | P.07.43 |
Nusco E. | P.10.77, P.24.151 |
Nussbaum R. | P.24.151 |
O | |
Obici L. | P.05.32 |
Ognio E. | P.01.6 |
Oleari R. | P.15.108 |
Olgasi C. | P.18.123 |
Oliviero S. | P.18.123 |
Omrani M. | P.20.140 |
Onnis A. | P.20.132 |
Orcesi S. | P.06.34 |
Orford M. | P.11.96 |
Origa R. | P.18.119 |
Ornaghi F. | P.10.69 |
Orsi A. | P.13.102 |
Ortega Martínez J. A. | P.09.53 |
Ostuni R. | P.18.124, P.20.140 |
P | |
Padula A. | P.11.97 |
Pagani F. | P.10.66 |
Pagliarani S. | P.04.21 |
Pagliari E. | P.04.29 |
Paiardini A. P. | P.16.111 |
Palagano E. | P.13.100 |
Palandri C. | P.02.15 |
Palmisano B. | P.13.103 |
Panariello F. | P.23.146 |
Pandey U. | P.04.26 |
Paniccia A. | P.28.157 |
Panicucci C. | P.01.6 |
Papa F. | P.01.3 |
Papaleo F. | P.06.35 |
Papasergi S. | P.10.78 |
Parenti G. | P.11.90, P.11.95 |
Pareyson D. | P.04.25, P.05.32 |
Parini R. | P.11.93 |
Paris P. | P.11.96 |
Parmeggiani C. | P.02.15 |
Parrini M. | P.09.53, P.09.54 |
Pasqualato S. | P.10.81 |
Pasqualetto E. | P.21.142 |
Passafaro M. | P.07.40, P.08.48, P.09.62 |
Passarella D. | P.10.68 |
Passeri L. | P.20.139 |
Passerini L. | P.20.139 |
Passoni A. | P.10.73 |
Patanella L. | P.10.72 |
Patarroyo-white S. | P.18.121 |
Pavinato L. | P.10.84 |
Pazienti A. | P.09.52 |
Pearce D. | P.28.169 |
Pedemonte M. | P.04.27, P.04.30 |
Pederzoli F. | P.10.73 |
Pedrocchi A. | P.01.8 |
Pegoraro E. | P.02.14, P.27.155 |
Pendin D. | P.10.71 |
Penna S. | P.13.100 |
Pennisi E. M. | P.02.17 |
Pennuto M. | P.04.26, P.10.82, P.10.83 |
Perenthaler E. | P.01.11 |
Peretto L. | P.10.66 |
Perfetti A. | P.01.9, P.03.19 |
Perna F. | P.11.90 |
Perocheau D. | P.11.96 |
Perrelli A. | P.25.153 |
Perrotta S. | P.18.119 |
Persichetti A. | P.13.103 |
Persichetti F. | P.07.42 |
Peruzzo R. | P.11.91 |
Pessina F. | P.24.150 |
Peters R. | P.18.121 |
Petralla S. | P.06.33 |
Petrillo C. | P.20.133 |
Petrini E. | P.09.52 |
Petruzzelli R. | P.19.129 |
Picco C. | P.13.104 |
Piccolella M. | P.10.83 |
Piccoli G. | P.10.79 |
Piccolo P. | P.11.97 |
Picollo A. | P.13.105 |
Pierattini B. | P.07.42 |
Pierrel F. | P.11.92 |
Pietrobon D. | P.06.36 |
Pimpinella D. | P.09.52 |
Pinelli M. | P.26.154 |
Pinton P. | P.06.33, P.25.153 |
Piol D. | P.04.26 |
Pioner J. M. | P.02.15 |
Piras F. | P.20.133 |
Pirola A. | P.04.23 |
Pisano I. | P.06.33 |
Pizzamiglio L. | P.07.40 |
Pizzo M. | P.16.112 |
Pizzo P. | P.10.65 |
Pizzorusso T. | P.08.45 |
Placidi F. | P.04.23 |
Plebani A. | P.20.132 |
Poeta E. | P.06.33 |
Poeta L. | P.08.49 |
Poggesi C. | P.02.15 |
Poletti A. | P.10.82, P.10.83 |
Polishchuk E. | P.16.115, P.19.129 |
Polishchuk R. | P.16.115, P.19.129 |
Politano L. | P.27.155 |
Pompilio G. | P.14.106 |
Pontesilli S. | P.11.93 |
Ponzoni L. | P.08.47, P.09.58, P.09.62 |
Ponzoni M. | P.18.118 |
Poondi-krishnan V. | P.20.136 |
Porcelli V. | P.06.33 |
Porrello E. | P.01.7 |
Portioli C. | P.09.53 |
Pozzi E. | P.10.84 |
Pozzi S. | P.28.171 |
Previtali S. C. | P.01.7, P.04.20, P.10.63 |
Principi E. | P.01.6 |
Prinetti A. | P.10.78 |
Prioni S. | P.10.78 |
Proserpio P. | P.04.23 |
Protasi F. | P.02.18 |
Provenzano C. | P.01.9, P.03.19 |
Pucci C. | P.09.56 |
Pulcrano S. | P.10.76 |
Puricella A. | P.09.55 |
Pusch M. | P.06.37 |
Q | |
Quaranta P. | P.20.140 |
Quattrone A. | P.01.11 |
Querceto S. | P.02.15 |
Querin G. | P.04.25 |
R | |
Raffaghello L. | P.01.6 |
Ramirez A. | P.04.29 |
Rampoldi L. | P.21.142 |
Ranghetti A. | P.20.134 |
Rapezzi C. | P.05.32 |
Rasmusson R. L. | P.09.60 |
Ratto G. M. | P.08.48, P.09.57 |
Ravasi M. | P.28.171 |
Ravella S. | P.04.27, P.04.30 |
Redaelli D. | P.11.93 |
Redaelli V. | P.10.67 |
Remoli C. | P.13.103 |
Ren E. | P.08.45 |
Renieri A. | P.27.155 |
Requena J. | P.10.81 |
Reschigna A. | P.11.89 |
Restelli E. | P.10.81 |
Retta S. F. | P.25.153 |
Riba M. | P.21.142 |
Ricagno S. | P.10.68 |
Ricca A. | P.10.69 |
Riccardi F. | P.10.66 |
Riccardo S. | P.23.146 |
Ricci G. | P.02.16 |
Riccio A. | P.15.107 |
Rigoni R. | P.18.126 |
Riminucci M. | P.13.103 |
Ripamonti M. | P.10.80 |
Ripolone M. | P.04.21 |
Risato G. | P.01.10 |
Riva M. | P.10.70 |
Riva N. | P.04.25 |
Rivellini C. | P.10.63 |
Rizzi E. | P.28.164 |
Rizzo F. | P.05.31 |
Rizzuti M. | P.04.29 |
Rizzuto R. | P.10.65 |
Robey P. | P.13.103 |
Roiter I. | P.10.67 |
Romani M. | P.07.43 |
Romano A. | P.10.75 |
Romano G. | P.10.66 |
Romano R. | P.10.63 |
Romei A. | P.08.44, P.08.51 |
Romigi A. | P.04.23 |
Ronzitti G. | P.04.21, P.09.53 |
Rosa A. | P.01.5 |
Rosano C. | P.11.90 |
Rossi A. | P.11.90 |
Rossi C. | P.18.117, P.18.119 |
Rossi S. | P.16.115 |
Rossiello F. | P.24.150 |
Rossini A. | P.14.106 |
Rossini M. | P.01.8 |
Rovelli A. | P.11.93 |
Rubinacci A. | P.18.118 |
Rubino A. | P.04.23 |
Rubio A. | P.10.80 |
Rucci N. | P.13.99 |
Ruffo E. | P.20.141 |
Ruiz Ceja K. A. | P.16.112 |
Ruozi B. | P.10.73 |
Rusmini P. | P.10.82, P.10.83 |
Russo C. | P.23.147 |
Russo F. | P.11.94 |
Russo M. | P.05.32 |
Russo Roberta | P.07.42 |
Russo Rosaria | P.10.68 |
S | |
Sabatelli M. | P.04.25, P.05.32 |
Sabatelli P. | P.01.13 |
Sacchetti N. | P.20.138 |
Sacchetto R. | P.01.10 |
Sacconi L. | P.02.15 |
Saggio I. | P.13.103 |
Sala C. | P.08.47 |
Sala D. | P.10.69 |
Sala L. | P.11.94 |
Sala M. | P.08.47, P.09.58, P.09.62 |
Saladino P. | P.10.78 |
Salani S. | P.05.31 |
Salerio F. A. | P.20.140 |
Salierno F. G. | P.16.113 |
Salio C. | P.09.60 |
Sallese M. | P.10.84 |
Salmona M. | P.10.73, P.10.81 |
Salvatore A. M. | P.23.148 |
Salviati L. | P.11.92, P.16.111 |
Sambri I. | P.10.72, P.10.77 |
Sanavio B. | P.28.165 |
Sandona' D. | P.01.10 |
Sangiorgi L. | P.27.155 |
Sansone V. | P.04.23 |
Santambrogio P. S. | P.10.80 |
Santini L. | P.02.15 |
Santoleri L. | P.18.119, P.18.124 |
Santoni De Sio F. | P.20.139 |
Santonicola P. | P.04.28 |
Santorelli F. | P.10.72 |
Santoro C. | P.07.42 |
Santoro L. | P.05.32, P.10.63 |
Santoro M. | P.24.151 |
Santulli C. | P.07.42 |
Sanvito F. | P.20.131 |
Sartiani L. | P.02.15 |
Sartirana C. | P.20.137 |
Sarzana M. | P.11.93 |
Sassoè-pognetto M. | P.09.60 |
Savardi A. | P.09.53 |
Scala M. | P.26.154 |
Scala S. | P.13.100, P.18.124, P.20.131, P.20.137, P.20.140 |
Scalisi G. | P.18.122 |
Scalmani P. | P.08.47 |
Scano M. | P.01.10 |
Scanziani E. | P.13.100 |
Scaramuzza S. | P.18.117, P.18.119 |
Scarfò R. | P.18.125 |
Schaeffer C. | P.21.142 |
Schinke T. | P.13.100 |
Schiroli G. | P.18.128 |
Scholz-starke J. | P.13.104 |
Schrader T. | P.10.77 |
Sciacco M. | P.27.155 |
Scolari F. | P.21.142 |
Scopece A. | P.14.106 |
Scorrano L. | P.16.109 |
Scotto Rosato A. | P.06.39 |
Selicorni A. | P.26.154 |
Selig S. | P.20.136 |
Sergi Sergi L. | P.13.100, P.20.137 |
Sessa A. | P.09.56 |
Settembre C. | P.13.101 |
Sgaravizzi G. | P.16.111 |
Siciliano G. | P.02.16 |
Silani V. | P.04.25 |
Simonelli F. | P.16.115 |
Sitia R. | P.13.102 |
Soardi M. | P.01.10 |
Sobacchi C. | P.13.100 |
Sol S. | P.23.147 |
Soldovieri M. V. | P.08.50 |
Sommariva E. | P.14.106 |
Soraru' G. | P.04.25 |
Soria L. | P.11.96 |
Sorrentino C. | P.10.76, P.10.77 |
Sorrentino I. | P.13.102 |
Sorrentino V. | P.02.18 |
Spanetta M. | P.04.23 |
Spaziano A. | P.10.75 |
Specchia V. | P.09.55 |
Spica E. | P.13.103 |
Squadrito M. | P.18.126 |
Squeri G. | P.11.94 |
Stadiotti I. | P.14.106 |
Staiano L. | P.24.151 |
Sterlini B. | P.08.44, P.08.51 |
Sthandier O. | P.01.5 |
Storto M. | P.18.118 |
Strazzullo M. | P.20.136 |
Strimpakos G. | P.01.9 |
Strisciuglio P. | P.11.90 |
Strollo S. | P.11.95 |
Stroppiano M. | P.27.155 |
Sturgeon C. M. | P.18.125 |
Suman M. | P.02.14 |
Surace E. M. | P.10.75, P.16.115 |
Szabadkai G. | P.02.14 |
Szabo I. | P.11.91 |
T | |
Taglialatela M. | P.08.50 |
Tagliavini F. | P.10.67 |
Taiana M. | P.04.29, P.05.31 |
Tammaro C. | P.21.142 |
Tapella L. | P.10.81 |
Tarallo A. | P.11.95 |
Tartaglione I. | P.18.119 |
Tartagni O. | P.06.33 |
Tassara M. | P.18.124 |
Tassinari M. | P.08.45 |
Taveggia C. | P.04.20 |
Taverna S. | P.09.56, P.10.80 |
Tavian D. | P.02.17 |
Tebaldi T. | P.01.11 |
Tedesco B. | P.10.82, P.10.83 |
Tempia F. | P.10.84 |
Tempio T. | P.13.102 |
Tesi C. | P.02.15 |
Testa G. | P.09.61 |
Testi R. | P.07.42 |
Teti A. M. | P.13.99 |
Tettamanti M. | P.10.67 |
Thalhammer A. | P.07.41 |
Tiberi P. | P.16.115 |
Tiboni F. | P.18.117 |
Tigem . | P.28.156 |
Tinnirello R. | P.10.78 |
Tiradani L. | P.10.69 |
Tiranti V. | P.10.80 |
Tiso N. | P.04.22, P.04.24 |
Tomasoni S. | P.21.143 |
Tondo C. | P.14.106 |
Tonlorenzi R. | P.01.7, P.10.63 |
Torella A. L. | P.26.154 |
Tornabene P. | P.16.115 |
Torrente Y. | P.01.4 |
Tosatto L. | P.04.26 |
Tosatto S. | P.04.26 |
Tosi G. | P.10.73, P.10.81 |
Tottene A. | P.06.36 |
Toubiana S. T. | P.20.136 |
Tozzi A. | P.09.58 |
Trabalzini L. | P.25.153 |
Trapani I. | P.16.115 |
Trattaro S. | P.09.61 |
Trazzi S. | P.08.45 |
Tresoldi C. | P.18.124 |
Trevisson E. | P.11.92 |
Trionfini P. | P.21.143 |
Tripathy D. | P.10.84 |
Tripodo C. | P.18.118, P.24.150 |
Tron G. | P.20.141 |
Trudu M. | P.21.142 |
Tucci F. | P.11.93 |
Tuccillo M. | P.08.49 |
Tufano M. | P.10.76 |
Tullio P. | P.10.65 |
Tupler R. | P.01.1 |
Turco E. | P.09.60 |
Turnu L. | P.14.106 |
U | |
Unali G. | P.20.133 |
Urciuoli G. | P.23.147 |
Uva P. | P.13.100 |
V | |
Vaccaro L. | P.23.146 |
Vai S. | P.01.2 |
Valassina N. | P.08.46 |
Valente E. M. | P.07.43 |
Valente P. | P.08.51 |
Valentino M. E. | P.25.152 |
Valenza M. | P.10.73 |
Vanni I. | P.10.81 |
Varani S. | P.28.165 |
Vasco C. | P.20.135 |
Vavassori V. | P.18.128, P.20.134, P.20.138 |
Vedovelli L. | P.10.71 |
Velnati S. | P.20.141 |
Verardo R. | P.11.87 |
Vercelli A. | P.10.83 |
Verpelli C. | P.08.47, P.09.58 |
Verrillo L. | P.08.49 |
Vezzoli M. | P.12.98, P.20.131 |
Viarengo G. | P.18.119 |
Vicidomini A. | P.10.66 |
Vicinanza M. | P.24.151 |
Vidal P. | P.04.21 |
Viero G. | P.01.11 |
Vilardo C. | P.21.144 |
Villa A. | P.13.100, P.18.126, P.18.128, P.20.138 |
Villa I. | P.18.118 |
Vinci E. | P.09.58 |
Virgili M. | P.06.33 |
Visentin C. | P.10.68 |
Visigalli I. | P.12.98 |
Vita G. | P.05.32 |
Vitelli E. | P.04.25 |
Vitiello G. | P.26.154 |
Vitriolo A. | P.09.61 |
Voellenkle C. | P.01.9, P.03.19 |
Volani C. | P.14.106 |
Volpin M. | P.18.127 |
W | |
Waddington S. | P.11.96 |
Walker G. | P.18.123 |
Wang C. M. | P.28.168, P.28.169 |
Weksberg R. | P.09.61 |
X | |
Xue E. | P.18.124 |
Y | |
Yoboue E. | P.13.102 |
Z | |
Zampelli A. | P.21.144 |
Zampi G. | P.04.28 |
Zancan S. | P.28.167 |
Zanello G. | P.28.169 |
Zanni G. | P.07.43 |
Zanzoni S. | P.16.111 |
Zara F. | P.07.41, P.08.44 |
Zatti A. | P.28.164 |
Zeviani M. | P.10.75, P.11.91 |
Ziogas I. | P.09.53 |
Zoccolillo M. | P.20.137 |
Zonari E. | P.11.93, P.13.100, P.18.127 |
Zuccaro E. | P.04.26 |
Zucchelli C. | P.10.81 |
Zucchelli S. | P.07.42, P.08.49 |
Lista Abstract
|